24,932 research outputs found

    Dance of the bulrushes: building conversations between social creatures

    Get PDF
    The interactive installation is in vogue. Interaction design and physical installations are accepted fixtures of modern life, and with these technology-driven installations beginning to exert influence on modes of mass communication and general expectations for user experiences, it seems appropriate to explore the variety of interactions that exist. This paper surveys a number of successful projects with a critical eye toward assessing the type of communication and/or conversation generated between interactive installations and human participants. Moreover, this exploration seeks to identify whether specific tactics and/or technologies are particularly suited to engendering layers of dialogue or ‘conversations’ within interactive physical computing installations. It is asserted that thoughtful designs incorporating self-organizational abilities can foster rich dialogues in which participants and the installation collaboratively generate value in the interaction. To test this hypothesis an interactive installation was designed and deployed in locations in and around London. Details of the physical objects and employed technologies are discussed, and results of the installation sessions are shown to corroborate the key tenets of this argument in addition to highlighting other concerns that are specifically relevant to the broad topic of interactive design

    The development of test methodology for testing glassy materials

    Get PDF
    The inherent brittleness of glass invariably leads to a large variability in strength data and a time dependence in strength (i.e., static fatigue). Loading rate plays a large role in strength values. Glass is found to be weaker when supporting loads over long periods as compared to glass which undergoes rapid loading. In this instance the purpose of rapid loading is to fail the glass before any significant crack growth occurs. However, a decrease in strength occurs with a decrease in loading rate, pursuant to substantial crack extension. These properties complicate the structural design allowable for the utilization of glass components in applications such as mirrors for the Space Telescope and AXAF for Spacelab and the space station

    A distributable APSE

    Get PDF
    A distributed Ada program library is a key element in a distributed Ada Program Support Environment (APSE). To implement this successfully, the program library universe as defined by the Ada Reference Manual must be broken up into independently manageable pieces. This in turn requires the support of a distributed database system, as well as a mechanism for identifying compilation units, linkable subprograms, and Ada types in a decentralized way, to avoid falling victim to the bottlenecks of a global database and/or global unique-identifier manager. It was found that the ability to decentralize Ada program library activity is a major advantage in the management of large Ada programs. Currently, there are 18 resource-catalog revision sets, each in its own Host Interface (HIF) partition, plus 18 partitions for testing each of these, plus 11 partitions for the top-level compiler/linker/program library manager components. Compiling and other development work can proceed in parallel in each of these partitions, without suffering the performance bottlenecks of global locks or global unique-identifier generation

    Proof test diagrams for Zerodur glass-ceramic

    Get PDF
    Proof test diagrams for Zerodur glass-ceramics are calculated from available fracture mechanics data. It is shown that the environment has a large effect on minimum time-to-failure as predicted by proof test diagrams

    Python for teaching introductory programming: A quantitative evaluation

    Get PDF
    This paper compares two different approaches of teaching introductory programming by quantitatively analysing the student assessments in a real classroom. The first approach is to emphasise the principles of object-oriented programming and design using Java from the very beginning. The second approach is to first teach the basic programming concepts (loops, branch, and use of libraries) using Python and then move on to oriented programming using Java. Each approach was adopted for one academic year (2008-09 and 2009-10) with first year undergraduate students. Quantitative analysis of the student assessments from the first semester of each year was then carried out. The results of this analysis are presented in this paper. These results suggest that the later approach leads to enhanced learning of introductory programming concepts by students
    corecore