33 research outputs found

    Opposite effects of two different strains of equine herpesvirus 1 infection on cytoskeleton composition in equine dermal ED and African green monkey kidney Vero cell lines : application of scanning cytometry and confocal-microscopy-based image analysis in a quantitative study

    No full text
    Viruses can reorganize the cytoskeleton and restructure the host cell transport machinery. During infection viruses use different cellular cues and signals to enlist the cytoskeleton for their mission. However, each virus specifically affects the cytoskeleton structure. Thus, the aim of our study was to investigate the cytoskeletal changes in homologous equine dermal (ED) and heterologous Vero cell lines infected with either equine herpesvirus 1 (EHV-1) strain Rac-H or Jan-E. We found that Rac-H strain disrupted actin fibers and reduced F-actin level in ED cells, whereas the virus did not influence Vero cell cytoskeleton. Conversely, the Jan-E strain induced polymerization of both F-actin and MT in Vero cells, but not in ED cells. Confocal-microscopy analysis revealed that α-tubulin colocalized with viral antigen in ED cells infected with either Rac-H or Jan-E viruses. Alterations in F-actin and α-tubulin were evaluated by confocal microscopy, Microimage analysis and scanning cytometry. This unique combination allowed precise interpretation of confocal-based images showing the cellular events induced by EHV-1. We conclude that examination of viral-induced pathogenic effects in species specific cell lines is more symptomatic than in heterologous cell lines.11 page(s

    Interactome rewiring following pharmacological targeting of BET bromodomains

    No full text
    Targeting bromodomains (BRDs) of the bromo-and-extra-terminal (BET) family offers opportunities for therapeutic intervention in cancer and other diseases. Here, we profile the interactomes of BRD2, BRD3, BRD4, and BRDT following treatment with the pan-BET BRD inhibitor JQ1, revealing broad rewiring of the interaction landscape, with three distinct classes of behavior for the 603 unique interactors identified. A group of proteins associate in a JQ1-sensitive manner with BET BRDs through canonical and new binding modes, while two classes of extra-terminal (ET)-domain binding motifs mediate acetylation-independent interactions. Last, we identify an unexpected increase in several interactions following JQ1 treatment that define negative functions for BRD3 in the regulation of rRNA synthesis and potentially RNAPII-dependent gene expression that result in decreased cell proliferation. Together, our data highlight the contributions of BET protein modules to their interactomes allowing for a better understanding of pharmacological rewiring in response to JQ1

    Interactome rewiring following pharmacological targeting of BET bromodomains

    No full text
    Targeting bromodomains (BRDs) of the bromo-and-extra-terminal (BET) family offers opportunities for therapeutic intervention in cancer and other diseases. Here, we profile the interactomes of BRD2, BRD3, BRD4, and BRDT following treatment with the pan-BET BRD inhibitor JQ1, revealing broad rewiring of the interaction landscape, with three distinct classes of behavior for the 603 unique interactors identified. A group of proteins associate in a JQ1-sensitive manner with BET BRDs through canonical and new binding modes, while two classes of extra-terminal (ET)-domain binding motifs mediate acetylation-independent interactions. Last, we identify an unexpected increase in several interactions following JQ1 treatment that define negative functions for BRD3 in the regulation of rRNA synthesis and potentially RNAPII-dependent gene expression that result in decreased cell proliferation. Together, our data highlight the contributions of BET protein modules to their interactomes allowing for a better understanding of pharmacological rewiring in response to JQ1
    corecore