16,431 research outputs found
Answer Sets for Logic Programs with Arbitrary Abstract Constraint Atoms
In this paper, we present two alternative approaches to defining answer sets
for logic programs with arbitrary types of abstract constraint atoms (c-atoms).
These approaches generalize the fixpoint-based and the level mapping based
answer set semantics of normal logic programs to the case of logic programs
with arbitrary types of c-atoms. The results are four different answer set
definitions which are equivalent when applied to normal logic programs. The
standard fixpoint-based semantics of logic programs is generalized in two
directions, called answer set by reduct and answer set by complement. These
definitions, which differ from each other in the treatment of
negation-as-failure (naf) atoms, make use of an immediate consequence operator
to perform answer set checking, whose definition relies on the notion of
conditional satisfaction of c-atoms w.r.t. a pair of interpretations. The other
two definitions, called strongly and weakly well-supported models, are
generalizations of the notion of well-supported models of normal logic programs
to the case of programs with c-atoms. As for the case of fixpoint-based
semantics, the difference between these two definitions is rooted in the
treatment of naf atoms. We prove that answer sets by reduct (resp. by
complement) are equivalent to weakly (resp. strongly) well-supported models of
a program, thus generalizing the theorem on the correspondence between stable
models and well-supported models of a normal logic program to the class of
programs with c-atoms. We show that the newly defined semantics coincide with
previously introduced semantics for logic programs with monotone c-atoms, and
they extend the original answer set semantics of normal logic programs. We also
study some properties of answer sets of programs with c-atoms, and relate our
definitions to several semantics for logic programs with aggregates presented
in the literature
Spin 3/2 dimer model
We present a parent Hamiltonian for weakly dimerized valence bond solid
states for arbitrary half-integral S. While the model reduces for S=1/2 to the
Majumdar-Ghosh Hamiltonian we discuss this model and its properties for S=3/2.
Its degenerate ground state is the most popular toy model state for discussing
dimerization in spin 3/2 chains. In particular, it describes the impurity
induced dimer phase in Cr8Ni as proposed recently. We point out that the
explicit construction of the Hamiltonian and its main features apply to
arbitrary half-integral spin S.Comment: 5+ pages, 6 figures; to appear in Europhysics Letter
Observation of an in-plane magnetic-field-driven phase transition in a quantum Hall system with SU(4) symmetry
In condensed matter physics, the study of electronic states with SU(N)
symmetry has attracted considerable and growing attention in recent years, as
systems with such a symmetry can often have a spontaneous symmetry-breaking
effect giving rise to a novel ground state. For example, pseudospin quantum
Hall ferromagnet of broken SU(2) symmetry has been realized by bringing two
Landau levels close to degeneracy in a bilayer quantum Hall system. In the past
several years, the exploration of collective states in other multi-component
quantum Hall systems has emerged. Here we show the conventional pseudospin
quantum Hall ferromagnetic states with broken SU(2) symmetry collapsed rapidly
into an unexpected state with broken SU(4) symmetry, by in-plane magnetic field
in a two-subband GaAs/AlGaAs two-dimensional electron system at filling factor
around . Within a narrow tilting range angle of 0.5 degrees, the
activation energy increases as much as 12 K. While the origin of this puzzling
observation remains to be exploited, we discuss the possibility of a
long-sought pairing state of electrons with a four-fold degeneracy.Comment: 13 pages, 4 figure
Dynamically stabilized decoherence-free states in non-Markovian open fermionic systems
Decoherence-free subspaces (DFSs) provide a strategy for protecting the
dynamics of an open system from decoherence induced by the system-environment
interaction. So far, DFSs have been primarily studied in the framework of
Markovian master equations. In this work, we study decoherence-free (DF) states
in the general setting of a non-Markovian fermionic environment. We identify
the DF states by diagonalizing the non-unitary evolution operator for a
two-level fermionic system attached to an electron reservoir. By solving the
exact master equation, we show that DF states can be stabilized dynamically.Comment: 11 pages, 3 figures. Any comments are welcom
Probing Quantum Hall Pseudospin Ferromagnet by Resistively Detected NMR
Resistively Detected Nuclear Magnetic Resonance (RD-NMR) has been used to
investigate a two-subband electron system in a regime where quantum Hall
pseudo-spin ferromagnetic (QHPF) states are prominently developed. It reveals
that the easy-axis QHPF state around the total filling factor can be
detected by the RD-NMR measurement. Approaching one of the Landau level (LL)
crossing points, the RD-NMR signal strength and the nuclear spin relaxation
rate enhance significantly, a signature of low energy spin
excitations. However, the RD-NMR signal at another identical LL crossing point
is surprisingly missing which presents a puzzle
Effects of pesticides and antibiotics on penaeid shrimp with special emphases on behavioral and biomarker responses
The purpose of the present study is to provide information on the current state of knowledge regarding the effects of pesticides and antibiotics used in aquaculture on penaeid shrimp, one of the most common aquatic products for human consumption, with a special emphasis on the use of behavioral, physiological, and biochemical response. These include behavior; feeding rate changes; respiration rate, oxygen consumption, and osmoregulation alterations; nucleic acids, protein, and glycogen synthesis; cholinesterase activity inhibition; ATPase activity; and oxidative stress responses. This paper also deals with residues of antibiotics and pesticides in penaeid shrimp. Antibiotics and pesticides used in aquaculture may have adverse effects on treated animals and human consumers health if they are not correctly used. As a complement to the measurement of antibiotic and pesticide residues in tissues, the use of behavioral and biomarker responses can provide more relevant biological information on the potential adverse effects of antibiotics and pesticides on penaeid shrimp health
Molecular Motor of Double-Walled Carbon Nanotube Driven by Temperature Variation
An elegant formula for coordinates of carbon atoms in a unit cell of a
single-walled nanotube (SWNT) is presented and a new molecular motor of
double-walled carbon nanotube whose inner tube is a long (8,4) SWNT and outer
tube a short (14,8) SWNT is constructed. The interaction between inner an outer
tubes is analytically derived by summing the Lennard-Jones potentials between
atoms in inner and outer tubes. It is proved that the molecular motor in a
thermal bath exhibits a directional motion with the temperature variation of
the bath.Comment: 9 pages, 4 figures, revtex
Synchronization in coupled map lattices as an interface depinning
We study an SOS model whose dynamics is inspired by recent studies of the
synchronization transition in coupled map lattices (CML). The synchronization
of CML is thus related with a depinning of interface from a binding wall.
Critical behaviour of our SOS model depends on a specific form of binding
(i.e., transition rates of the dynamics). For an exponentially decaying binding
the depinning belongs to the directed percolation universality class. Other
types of depinning, including the one with a line of critical points, are
observed for a power-law binding.Comment: 4 pages, Phys.Rev.E (in press
- …