11 research outputs found
Detection of temporarily flooded vegetation using time series of dual polarised C-band synthetic aperture radar data
The intense research of the last decades in the field of flood monitoring has shown that microwave
sensors provide valuable information about the spatial and temporal flood extent. The new
generation of satellites, such as the Sentinel-1 (S-1) constellation, provide a unique, temporally
high-resolution detection of the earth's surface and its environmental changes. This opens up new
possibilities for accurate and rapid flood monitoring that can support operational applications. Due
to the observation of the earth's surface from space, large-scale flood events and their spatiotemporal changes can be monitored. This requires the adaptation of existing or the development of
new algorithms, which on the one hand enable precise and computationally efficient flood
detection and on the other hand can process a large amounts of data.
In order to capture the entire extent of the flood area, it is essential to detect temporary flooded
vegetation (TFV) areas in addition to the open water areas. The disregard of temporary flooded
vegetation areas can lead to severe underestimation of the extent and volume of the flood. Under
certain system and environmental conditions, Synthetic Aperture Radar (SAR) can be utilized to
extract information from under the vegetation cover. Due to multiple backscattering of the SAR
signal between the water surface and the vegetation, the flooded vegetation areas are mostly
characterized by increased backscatter values. Using this information in combination with a
continuous monitoring of the earth's surface by the S-1 satellites, characteristic time series-based
patterns for temporary flooded vegetation can be identified. This combination of information
provides the foundation for the time series approach presented here.
This work provides a comprehensive overview of the relevant sensor and environmental
parameters and their impact on the SAR signal regarding temporary open water (TOW) and TFV
areas. In addition, existing methods for the derivation of flooded vegetation are reviewed and their
benefits, limitations, methodological trends and potential research needs for this area are identified
and assessed. The focus of the work lies in the development of a SAR and time series-based
approach for the improved extraction of flooded areas by the supplementation of TFV and on the
provision of a precise and rapid method for the detection of the entire flood extent.
The approach developed in this thesis allows for the precise extraction of large-scale flood areas
using dual-polarized C-band time series data and additional information such as topography and
urban areas. The time series features include the characteristic variations (decrease and/or
increase of backscatter values) on the flood date for the flood-related classes compared to the
whole time series. These features are generated individually for each available polarization (VV,
VH) and their ratios (VV/VH, VV-VH, VV+VV). The generation of the time series features was
performed by Z-transform for each image element, taking into account the backscatter values on
the flood date and the mean value and standard deviation of the backscatter values from the nonflood dates. This allowed the comparison of backscatter intensity changes between the image
elements. The time series features constitute the foundation for the hierarchical threshold method
for deriving flood-related classes. Using the Random Forest algorithm, the importance of the time
series data for the individual flood-related classes was analyzed and evaluated. The results showed
that the dual-polarized time series features are particularly relevant for the derivation of TFV.
However, this may differ depending on the vegetation type and other environmental conditions.
The analyses based on S-1 data in Namibia, Greece/Turkey and China during large-scale floods
show the effectiveness of the method presented here in terms of classification accuracy. Theiv
supplementary integration of temporary flooded vegetation areas and the use of additional
information resulted in a significant improvement in the detection of the entire flood extent. It
could be shown that a comparably high classification accuracy (~ 80%) was achieved for the flood
extent in each of study areas. The transferability of the approach due to the application of a single
time series feature regarding the derivation of open water areas could be confirmed for all study
areas. Considering the seasonal component by using time series data, the seasonal variability of the
backscatter signal for vegetation can be detected. This allows for an improved differentiation
between flooded and non-flooded vegetation areas. Simultaneously, changes in the backscatter
signal can be assigned to changes in the environmental conditions, since on the one hand a time
series of the same image element is considered and on the other hand the sensor parameters do
not change due to the same acquisition geometry. Overall, the proposed time series approach
allows for a considerable improvement in the derivation of the entire flood extent by
supplementing the TOW areas with the TFV areas
Detection of Temporary Flooded Vegetation Using Sentinel-1 Time Series Data
The C-band Sentinel-1 satellite constellation enables the continuous monitoring of the Earth's surface within short revisit times. Thus, it provides Synthetic Aperture Radar (SAR) time series data that can be used to detect changes over time regardless of daylight or weather conditions. Within this study, a time series classification approach is developed for the extraction of the flood extent with a focus on temporary flooded vegetation (TFV). This method is based on Sentinel-1 data, as well as auxiliary land cover information, and combines a pixel-based and an object-oriented approach. Multi-temporal characteristics and patterns are applied to generate novel times series features, which represent a basis for the developed approach. The method is tested on a study area in Namibia characterized by a large flood event in April 2017. Sentinel-1 times series were used for the period between September 2016 and July 2017. It is shown that the supplement of TFV areas to the temporary open water areas prevents the underestimation of the flood area, allowing the derivation of the entire flood extent. Furthermore, a quantitative evaluation of the generated flood mask was carried out using optical Sentinel-2 images, whereby it was shown that overall accuracy increased by 27% after the inclusion of the TFV
Detection of temporarily flooded vegetation using time series of dual polarised C-band synthetic aperture radar data
The intense research of the last decades in the field of flood monitoring has shown that microwave
sensors provide valuable information about the spatial and temporal flood extent. The new
generation of satellites, such as the Sentinel-1 (S-1) constellation, provide a unique, temporally
high-resolution detection of the earth's surface and its environmental changes. This opens up new
possibilities for accurate and rapid flood monitoring that can support operational applications. Due
to the observation of the earth's surface from space, large-scale flood events and their spatiotemporal changes can be monitored. This requires the adaptation of existing or the development of
new algorithms, which on the one hand enable precise and computationally efficient flood
detection and on the other hand can process a large amounts of data.
In order to capture the entire extent of the flood area, it is essential to detect temporary flooded
vegetation (TFV) areas in addition to the open water areas. The disregard of temporary flooded
vegetation areas can lead to severe underestimation of the extent and volume of the flood. Under
certain system and environmental conditions, Synthetic Aperture Radar (SAR) can be utilized to
extract information from under the vegetation cover. Due to multiple backscattering of the SAR
signal between the water surface and the vegetation, the flooded vegetation areas are mostly
characterized by increased backscatter values. Using this information in combination with a
continuous monitoring of the earth's surface by the S-1 satellites, characteristic time series-based
patterns for temporary flooded vegetation can be identified. This combination of information
provides the foundation for the time series approach presented here.
This work provides a comprehensive overview of the relevant sensor and environmental
parameters and their impact on the SAR signal regarding temporary open water (TOW) and TFV
areas. In addition, existing methods for the derivation of flooded vegetation are reviewed and their
benefits, limitations, methodological trends and potential research needs for this area are identified
and assessed. The focus of the work lies in the development of a SAR and time series-based
approach for the improved extraction of flooded areas by the supplementation of TFV and on the
provision of a precise and rapid method for the detection of the entire flood extent.
The approach developed in this thesis allows for the precise extraction of large-scale flood areas
using dual-polarized C-band time series data and additional information such as topography and
urban areas. The time series features include the characteristic variations (decrease and/or
increase of backscatter values) on the flood date for the flood-related classes compared to the
whole time series. These features are generated individually for each available polarization (VV,
VH) and their ratios (VV/VH, VV-VH, VV+VV). The generation of the time series features was
performed by Z-transform for each image element, taking into account the backscatter values on
the flood date and the mean value and standard deviation of the backscatter values from the nonflood dates. This allowed the comparison of backscatter intensity changes between the image
elements. The time series features constitute the foundation for the hierarchical threshold method
for deriving flood-related classes. Using the Random Forest algorithm, the importance of the time
series data for the individual flood-related classes was analyzed and evaluated. The results showed
that the dual-polarized time series features are particularly relevant for the derivation of TFV.
However, this may differ depending on the vegetation type and other environmental conditions.
The analyses based on S-1 data in Namibia, Greece/Turkey and China during large-scale floods
show the effectiveness of the method presented here in terms of classification accuracy. Theiv
supplementary integration of temporary flooded vegetation areas and the use of additional
information resulted in a significant improvement in the detection of the entire flood extent. It
could be shown that a comparably high classification accuracy (~ 80%) was achieved for the flood
extent in each of study areas. The transferability of the approach due to the application of a single
time series feature regarding the derivation of open water areas could be confirmed for all study
areas. Considering the seasonal component by using time series data, the seasonal variability of the
backscatter signal for vegetation can be detected. This allows for an improved differentiation
between flooded and non-flooded vegetation areas. Simultaneously, changes in the backscatter
signal can be assigned to changes in the environmental conditions, since on the one hand a time
series of the same image element is considered and on the other hand the sensor parameters do
not change due to the same acquisition geometry. Overall, the proposed time series approach
allows for a considerable improvement in the derivation of the entire flood extent by
supplementing the TOW areas with the TFV areas
Ableitung und Analyse von großflächigen Informationen zur urbane Struktur mit Methoden der Fernerkundung
Jede Stadt besitzt ein einzigartiges Erscheinungsbild, welches durch die Einflüsse des Menschen geformt und geprägt wird. Das charakteristische Bild einer Stadt wird vor allem durch ihre physische Struktur repräsentiert und stellt deshalb eine relevante Grundlage zum Verständnis der Zusammenhänge und der Veränderungen im urbanen Raum dar. Zur städtischen Struktur werden konkrete physische Komponenten gezählt, wie beispielsweise Gebäude, Verkehrsflächen, Grünflächen, Freiflächen etc. Ein etabliertes Verfahren zur Ableitung dieser Elemente stellt die Fernerkundung dar.
Die Beschreibung der physischen Struktur des Raumes erfolgt auf der Grundlage von aktuellen, flächendeckenden, hochaufgelösten, optischen Satellitenbilddaten, welche in Verbindung mit weiteren Geodaten eine Erfassung der Landbedeckung und der Bebauung ermöglichen. Dadurch können auch kleinräumige Elemente der urbanen Struktur erfasst werden. Die Informationen werden anhand eines objektbasierten Bildanalyseansatzes aus den Satellitenbildern abgeleitet, wobei dieser Prozess weitgehend automatisiert erfolgt. Darüber hinaus wird für die physische Charakterisierung des städtischen Raumes die vertikale Komponente aus einem digitalen Geländemodell (DOM) extrahiert und für die Bestimmung der Höhe der Gebäude eingesetzt. Aus der Landbedeckung werden physisch-stadträumliche Kontextmerkmale abgeleitet, welche die Analyse und einen quantitativen Vergleich der Stadtstruktur erlauben. Hierzu werden die physischen Komponenten der Städte anhand des Landschaftsstrukturmaßes "Dichte" quantitativ beschrieben. Konkret dient die Dichte zur Ableitung der physisch-stadträumlichen Merkmale (Versiegelungs-, Vegetations- und Gebäudedichte in 2D und 3D), welche auf der Grundlage von definierten räumlichen Bezugsebenen ermittelt werden und eine quantitative Beschreibung der städtischen Struktur ermöglichen. Zusätzlich erlauben die Merkmale anhand von neu entwickelten Ansätzen eine Einordnung der Städte in Gruppen, welche miteinander verglichen werden können.
Die Ergebnisse zeigen, dass der objektbasierte Bildanalyseansatz, unter der Verwendung von hochaufgelösten, optischen Fernerkundungsdaten, eine geeignete Methode zur Charakterisierung und Analyse von kleinräumigen urbanen Struktur darstellt. Die Resultate führen zusätzlich zu der Erkenntnis, dass die entwickelten Ansätze für die Stadtstrukturanalyse, welche die Gruppierung der Städte anhand ihrer Dichtewerte und die Ableitung gruppencharakteristischer Merkmale umfassen, ein geeignetes Konzept für einen quantitativen Vergleich der Städte darstellen
Flood Monitoring in Vegetated Areas Using Multitemporal Sentinel-1 Data: Impact of Time Series Features
Synthetic Aperture Radar (SAR) is particularly suitable for large-scale mapping of inundations, as this tool allows data acquisition regardless of illumination and weather conditions. Precise information about the flood extent is an essential foundation for local relief workers, decision-makers from crisis management authorities or insurance companies. In order to capture the full extent of the flood, open water and especially temporary flooded vegetation (TFV) areas have to be considered. The Sentinel-1 (S-1) satellite constellation enables the continuous monitoring of the earths surface with a short revisit time. In particular, the ability of S-1 data to penetrate the vegetation provides information about water areas underneath the vegetation. Different TFV types, such as high grassland/reed and forested areas, from independent study areas were analyzed to show both the potential and limitations of a developed SAR time series classification approach using S-1 data. In particular, the time series feature that would be most suitable for the extraction of the TFV for all study areas was investigated in order to demonstrate the potential of the time series approaches for transferability and thus for operational use. It is shown that the result is strongly influenced by the TFV type and by other environmental conditions. A quantitative evaluation of the generated inundation maps for the individual study areas is carried out by optical imagery. It shows that analyzed study areas have obtained Producer’s/User’s accuracy values for TFV between 28% and 90%/77% and 97% for pixel-based classification and between 6% and 91%/74% and 92% for object-based classification depending on the time series feature used. The analysis of the transferability for the time series approach showed that the time series feature based on VV (vertical/vertical) polarization is particularly suitable for deriving TFV types for different study areas and based on pixel elements is recommended for operational use
Flood monitoring in vegetated areas using multitemporal Sentinel-1 data: Impact of time series features
Synthetic Aperture Radar (SAR) is particularly suitable for large-scale mapping of inundations, as this tool allows data acquisition regardless of illumination and weather conditions. Precise information about the flood extent is an essential foundation for local relief workers, decision-makers from crisis management authorities or insurance companies. In order to capture the full extent of the flood, open water and especially temporary flooded Vegetation (TFV) areas have to be considered. The Sentinel-1 (S-1) satellite constellation enables the continuous monitoring of the earths surface with a short revisit time. In particular, the ability of S-1 data to penetrate the vegetation
provides information about water areas underneath the vegetation. Different TFV types, such as high grassland/reed and forested areas, from independent study areas were analyzed to show both the potential and limitations of a developed SAR time series classification approach using S-1 data. In particular, the time series feature that would be most suitable for the extraction of the TFV for all study areas was investigated in order to demonstrate the potential of the time series approaches for
transferability and thus for operational use. It is shown that the result is strongly influenced by the TFV type and by other environmental conditions. A quantitative evaluation of the generated Inundation maps for the individual study areas is carried out by optical imagery. It shows that analyzed study areas have obtained Producer’s/User’s accuracy values for TFV between 28% and 90%/77% and 97% for pixel-based classification and between 6% and 91%/74% and 92% for object-based classification depending on the time series feature used. The analysis of the transferability for the time series
approach showed that the time series feature based on VV (vertical/vertical) polarization is particularly suitable for deriving TFV types for different study areas and based on pixel elements is recommended for operational use