10 research outputs found

    Clinical characteristics, management strategies and outcomes of patients with recurrent venous thromboembolism in the real world

    Get PDF
    There is a paucity of data on management strategies and clinical outcomes after recurrent venous thromboembolism (VTE). In a multicenter registry enrolling 3027 patients with acute symptomatic VTE, the current study population was divided into the following 3 groups: (1) First recurrent VTE during anticoagulation therapy (N = 110); (2) First recurrent VTE after discontinuation of anticoagulation therapy (N = 116); and (3) No recurrent VTE (N = 2801). Patients with first recurrent VTE during anticoagulation therapy more often had active cancer (45, 25 and 22%, P < 0.001). Among 110 patients with first recurrent VTE during anticoagulation therapy, 84 patients (76%) received warfarin at recurrent VTE with the median prothrombin time-international normalized ratio (PT-INR) value at recurrent VTE of 1.6, although patients with active cancer had a significantly higher median PT-INR value at recurrent VTE compared with those without active cancer (2.0 versus 1.4, P < 0.001). Within 90 days after recurrent VTE, 23 patients (20.9%) during anticoagulation therapy and 24 patients (20.7%) after discontinuation of anticoagulation therapy died. Active cancer was a major cause of recurrent VTE during anticoagulation therapy as a patient-related factor, while sub-optimal intensity of anticoagulation therapy was a major cause of recurrent VTE during anticoagulation therapy as a treatment-related factor, particularly in patients without active cancer

    Optimization of prediction methods for risk assessment of pathogenic germline variants in the Japanese population

    Get PDF
    Predicting pathogenic germline variants (PGVs) in breast cancer patients is important for selecting optimal therapeutics and implementing risk reduction strategies. However, PGV risk factors and the performance of prediction methods in the Japanese population remain unclear. We investigated clinicopathological risk factors using the Tyrer-Cuzick (TC) breast cancer risk evaluation tool to predict BRCA PGVs in unselected Japanese breast cancer patients (n = 1, 995). Eleven breast cancer susceptibility genes were analyzed using target-capture sequencing in a previous study; the PGV prevalence in BRCA1, BRCA2, and PALB2 was 0.75%, 3.1%, and 0.45%, respectively. Significant associations were found between the presence of BRCA PGVs and early disease onset, number of familial cancer cases (up to third-degree relatives), triple-negative breast cancer patients under the age of 60, and ovarian cancer history (all P < .0001). In total, 816 patients (40.9%) satisfied the National Comprehensive Cancer Network (NCCN) guidelines for recommending multigene testing. The sensitivity and specificity of the NCCN criteria for discriminating PGV carriers from noncarriers were 71.3% and 60.7%, respectively. The TC model showed good discrimination for predicting BRCA PGVs (area under the curve, 0.75; 95% confidence interval, 0.69-0.81). Furthermore, use of the TC model with an optimized cutoff of TC score ≥0.16% in addition to the NCCN guidelines improved the predictive efficiency for high-risk groups (sensitivity, 77.2%; specificity, 54.8%; about 11 genes). Given the influence of ethnic differences on prediction, we consider that further studies are warranted to elucidate the role of environmental and genetic factors for realizing precise prediction

    Acute Coronary Syndrome in Acute Myeloid Leukemia with Maturation Accompanying Megakaryocytic Differentiation

    No full text
    An autopsy case (85-year-old Japanese male) of myeloperoxidase- (MPO-) positive acute myeloid leukemia with maturation (M1) accompanying megakaryocytic differentiation is presented. The patient manifested acute coronary syndrome. Even after emergent percutaneous coronary intervention, his performance status remained poor, so no chemotherapy against leukemia was given. The final white blood cell count reached 291,700/μL, and the platelet count was elevated to 510,000/μL. No cytogenetic studies were performed. He died at the 25th day of hospitalization. Autopsy revealed marked leukemic infiltration to the endocardium and subendocardial myocardium. Subendocardial myonecrosis was surrounded or replaced by the leukemic blasts, and neither granulation tissue reaction nor fibrosis was observed. In the cardiovascular lumen, lard-like blood clots were formed and microscopically consisted of leukemic blasts and platelets (leukemic thrombi). Infiltration of leukemic blasts was seen in the body cavities and systemic organs including the lung. The MPO-positive blasts lacked azurophilic granules and expressed the stem cell markers, CD34 and CD117 (c-kit). No features of myelofibrosis were seen in the 100% cellular marrow. In the endocardium, liver, lymph nodes, and bone marrow, megakaryocytic cells (CD42b/CD61+, MPO-) were distributed, while the small-sized blastic cells in the blood and tissues predominantly expressed MPO. The blasts lacked expression of CD42b/CD61. Megakaryocytic differentiation might be stimulated by certain tissue factors. AML accompanying megakaryocytic differentiation in certain tissues and organs should be distinguished from acute megakaryoblastic leukemia. The mechanisms provoking acute coronary syndrome in acute myeloid leukemia are discussed

    Cancer-Associated Venous Thromboembolism in the Real World --From the COMMAND VTE Registry--

    Get PDF
    Background:There is a paucity of data on the management and prognosis of cancer-associated venous thromboembolism (VTE), leading to uncertainty about optimal management strategies. Methods and Results:The COMMAND VTE Registry is a multicenter registry enrolling 3, 027 consecutive acute symptomatic VTE patients in Japan between 2010 and 2014. We divided the entire cohort into 3 groups: active cancer (n=695, 23%), history of cancer (n=243, 8%), and no history of cancer (n=2089, 69%). The rate of anticoagulation discontinuation was higher in patients with active cancer (43.5%, 27.0%, and 27.0%, respectively, at 1 year, P<0.001). The cumulative 5-year incidences of recurrent VTE, major bleeding, and all-cause death were higher in patients with active cancer (recurrent VTE: 17.7%, 10.2%, and 8.6%, P<0.001; major bleeding: 26.6%, 8.8%, and 9.3%, P<0.001; all-cause death: 73.1%, 28.6%, 14.6%, P<0.001). Among the 4 groups classified according to active cancer status, the cumulative 1-year incidence of recurrent VTE was higher in the metastasis group (terminal stage group: 6.4%, metastasis group: 22.1%, under chemotherapy group: 10.8%, and other group: 5.8%, P<0.001). Conclusions:In a current real-world VTE registry, patients with active cancer had higher risk for VTE recurrence, bleeding, and death, with variations according to cancer status, than patients without active cancer. Anticoagulation therapy was frequently discontinued prematurely in patients with active cancer in discordance with current guideline recommendations

    Optimization of prediction methods for risk assessment of pathogenic germline variants in the Japanese population

    No full text
    Predicting pathogenic germline variants (PGVs) in breast cancer patients is important for selecting optimal therapeutics and implementing risk reduction strategies. However, PGV risk factors and the performance of prediction methods in the Japanese population remain unclear. We investigated clinicopathological risk factors using the Tyrer‐Cuzick (TC) breast cancer risk evaluation tool to predict BRCA PGVs in unselected Japanese breast cancer patients (n = 1,995). Eleven breast cancer susceptibility genes were analyzed using target‐capture sequencing in a previous study; the PGV prevalence in BRCA1, BRCA2, and PALB2 was 0.75%, 3.1%, and 0.45%, respectively. Significant associations were found between the presence of BRCA PGVs and early disease onset, number of familial cancer cases (up to third‐degree relatives), triple‐negative breast cancer patients under the age of 60, and ovarian cancer history (all P < .0001). In total, 816 patients (40.9%) satisfied the National Comprehensive Cancer Network (NCCN) guidelines for recommending multigene testing. The sensitivity and specificity of the NCCN criteria for discriminating PGV carriers from noncarriers were 71.3% and 60.7%, respectively. The TC model showed good discrimination for predicting BRCA PGVs (area under the curve, 0.75; 95% confidence interval, 0.69‐0.81). Furthermore, use of the TC model with an optimized cutoff of TC score ≥0.16% in addition to the NCCN guidelines improved the predictive efficiency for high‐risk groups (sensitivity, 77.2%; specificity, 54.8%; about 11 genes). Given the influence of ethnic differences on prediction, we consider that further studies are warranted to elucidate the role of environmental and genetic factors for realizing precise prediction
    corecore