148 research outputs found

    Associations of CT evaluations of antigravity muscles, emphysema and airway disease with longitudinal outcomes in patients with COPD

    Get PDF
    Multiple CT indices are associated with disease progression and mortality in patients with COPD, but which indices have the strongest association remain unestablished. This longitudinal 10-year observational study (n=247) showed that the emphysema severity on CT is more closely associated with the progression of airflow limitation and that a reduction in the cross-sectional area of erector spinae muscles (ESMCSA) on CT is more closely associated with mortality than the other CT indices, independent of patient demographics and pulmonary function. ESMCSA is a useful CT index that is more closely associated with long-term mortality than emphysema and airway disease in patients with COPD

    Physiological Impairments on Respiratory Oscillometry and Future Exacerbations in Chronic Obstructive Pulmonary Disease Patients without a History of Frequent Exacerbations

    Get PDF
    Respiratory oscillometry allows measuring respiratory resistance and reactance during tidal breathing and may predict exacerbations in patients with chronic obstructive pulmonary disease (COPD). While the Global Initiative for Chronic Obstructive Lung Disease (GOLD) advocates the ABCD classification tool to determine therapeutic approach based on symptom and exacerbation history, we hypothesized that in addition to spirometry, respiratory oscillometry complemented the ABCD tool to identify patients with a high risk of exacerbations. This study enrolled male outpatients with stable COPD who were prospectively followed-up over 5 years after completing mMRC scale and COPD assessment test (CAT) questionnaires, post-bronchodilator spirometry and respiratory oscillometry to measure resistance, reactance, and resonant frequency (Fres), and emphysema quantitation on computed tomography. Total 134 patients were classified into the GOLD A, B, C, and D groups (n = 48, 71, 5, and 9) based on symptoms on mMRC and CAT and a history of exacerbations in the previous year. In univariable analysis, higher Fres was associated with an increased risk of exacerbation more strongly than other respiratory oscillometry indices. Fres was closely associated with forced expiratory volume in 1 sec (FEV1). In multivariable Cox-proportional hazard models of the GOLD A and B groups, either lower FEV1 group or higher Fres group was associated with a shorter time to the first exacerbation independent of the GOLD group (A vs B) and emphysema severity. Adding respiratory oscillometry to the ABCD tool may be useful for risk estimation of future exacerbations in COPD patients without frequent exacerbation history

    A homological approach to a mathematical definition of pulmonary fibrosis and emphysema on computed tomography

    Get PDF
    Three-dimensional imaging is essential to evaluate local abnormalities and understand structure-function relationships in an organ. However, quantifiable and interpretable methods to localize abnormalities remain unestablished. Visual assessments are prone to bias, machine learning methods depend on training images, and the underlying decision principle is usually difficult to interpret. Here, we developed a homological approach to mathematically define emphysema and fibrosis in the lungs on computed tomography (CT). Using persistent homology, the density of homological features, including connected components, tunnels, and voids, was extracted from the volumetric CT scans of lung diseases. A pair of CT values at which each homological feature appeared (birth) and disappeared (death) was computed by sweeping the threshold levels from higher to lower CT values. Consequently, fibrosis and emphysema were defined as voxels with dense voids having a longer lifetime (birth-death difference) and voxels with dense connected components having a lower birth, respectively. In an independent dataset including subjects with idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), and combined pulmonary fibrosis and emphysema (CPFE), the proposed definition enabled accurate segmentation with comparable quality to deep learning in terms of Dice coefficients. Persistent homology-defined fibrosis was closely associated with physiological abnormalities such as impaired diffusion capacity and long-term mortality in subjects with IPF and CPFE, and persistent homology-defined emphysema was associated with impaired diffusion capacity in subjects with COPD. The present persistent homology-based evaluation of structural abnormalities could help explore the clinical and physiological impacts of structural changes and morphological mechanisms of disease progression

    Specific Egg Yolk Immunoglobulin as a New Preventive Approach for Shiga-Toxin-Mediated Diseases

    Get PDF
    Shiga toxins (Stxs) are involved in the development of severe systemic complications associated with enterohemorrhagic Escherichia coli (EHEC) infection. Various neutralizing agents against Stxs are under investigation for management of EHEC infection. In this study, we immunized chickens with formalin-inactivated Stx-1 or Stx-2, and obtained immunoglobulin Y (IgY) from the egg yolk. Anti-Stx-1 IgY and anti-Stx-2 IgY recognized the corresponding Stx A subunit and polymeric but not monomeric B subunit. Anti-Stx-1 IgY and anti-Stx-2 IgY suppressed the cytotoxicity of Stx-1 and Stx-2 to HeLa 229 cells, without cross-suppressive activity. The suppressive activity of these IgY was abrogated by pre-incubation with the corresponding recombinant B subunit, which suggests that the antibodies directed to the polymeric B subunits were predominantly involved in the suppression. In vivo, the intraperitoneal or intravenous administration of these IgY rescued mice from death caused by intraperitoneal injection of the corresponding toxin at a lethal dose. Moreover, oral administration of anti-Stx-2 IgY reduced the mortality of mice infected intestinally with EHEC O157:H7. Our results therefore suggest that anti-Stx IgY antibodies may be considered as preventive agents for Stx-mediated diseases in EHEC infection

    Central airway and peripheral lung structures in airway disease dominant COPD

    Get PDF
    The concept that the small airway is a primary pathological site for all COPD phenotypes has been challenged by recent findings that the disease starts from the central airways in COPD subgroups and that a smaller central airway tree increases COPD risk. This study aimed to examine whether the computed tomography (CT)-based airway disease-dominant (AD) subtype, defined using the central airway dimension, was less associated with small airway dysfunction (SAD) on CT, compared to the emphysema-dominant (ED) subtype. COPD patients were categorised into mild, AD, ED and mixed groups based on wall area per cent (WA%) of the segmental airways and low attenuation volume per cent in the Kyoto–Himeji (n=189) and Hokkaido COPD cohorts (n=93). The volume per cent of SAD regions (SAD%) was obtained by nonrigidly registering inspiratory and expiratory CT. The AD group had a lower SAD% than the ED group and similar SAD% to the mild group. The AD group had a smaller lumen size of airways proximal to the segmental airways and more frequent asthma history before age 40 years than the ED group. In multivariable analyses, while the AD and ED groups were similarly associated with greater airflow limitation, the ED, but not the AD, group was associated with greater SAD%, whereas the AD, but not the ED, group was associated with a smaller central airway size. The CT-based AD COPD subtype might be associated with a smaller central airway tree and asthma history, but not with peripheral lung pathologies including small airway disease, unlike the ED subtype

    Quantitative measurement of airway dimensions using ultra-high resolution computed tomography

    Get PDF
    Background: Quantitative measurement of airway dimensions using computed tomography (CT) is performed in relatively larger airways due to the limited resolution of CT scans. Nevertheless, the small airway is an important pathological lesion in lung diseases such as chronic obstructive pulmonary disease (COPD) and asthma. Ultra-high resolution scanning may resolve the smaller airway, but its accuracy and limitations are unclear. Methods: Phantom tubes were imaged using conventional (512 × 512) and ultra-high resolution (1024 × 1024 and 2048 × 2048) scans. Reconstructions were performed using the forward-projected model-based iterative reconstruction solution (FIRST) algorithm in 512 × 512 and 1024 × 1024 matrix scans and the adaptive iterative dose reduction 3D (AIDR-3D) algorithm for all scans. In seven subjects with COPD, the airway dimensions were measured using the 1024 × 1024 and 512 × 512 matrix scans. Results: Compared to the conventional 512 × 512 scan, variations in the CT values for air were increased in the ultra-high resolution scans, except in the 1024×1024 scan reconstructed through FIRST. The measurement error of the lumen area of the tube with 2-mm diameter and 0.5-mm wall thickness (WT) was minimal in the ultra-high resolution scans, but not in the conventional 512 × 512 scan. In contrast to the conventional scans, the ultra-high resolution scans resolved the phantom tube with ≥ 0.6-mm WT at an error rate of < 11%. In seven subjects with COPD, the WT showed a lower value with the 1024 × 1024 scans versus the 512 × 512 scans. Conclusions: The ultra-high resolution scan may allow more accurate measurement of the bronchioles with smaller dimensions compared with the conventional scan

    Pathophysiological relevance of sputum MUC5AC and MUC5B levels in patients with mild asthma

    Get PDF
    [Background] Airway mucus hypersecretion is an important pathophysiological feature of asthma. MUC5AC and MUC5B are the major secreted polymeric mucins in airways, and their compositions affect mucus properties. Despite the increasing appreciation of MUC5AC and MUC5B compositions in asthmatic airways, their pathophysiological relevance remains to be fully understood in humans. [Methods] In this cross-sectional study, we prospectively enrolled newly referred steroid-untreated patients with mild asthma and healthy controls. We compared induced sputum MUC5AC and MUC5B levels between patients and controls. Subsequently, we assessed the correlation between MUC5AC and MUC5B levels and clinical indices in patients. Sputum MUC5AC and MUC5B levels were measured using enzyme-linked immunosorbent assays. [Results] Sputum MUC5AC and MUC5B levels were significantly higher in patients (n = 87) than in controls (n = 22) (p = 0.0002 and p = 0.006, respectively). The ratio of sputum MUC5AC to MUC5B tended to be higher in patients than in controls (p = 0.07). Sputum MUC5AC levels significantly and positively correlated with fractional exhaled nitric oxide at expiratory flow of 50 mL/s (Spearman's rho = 0.29, p = 0.006), sputum eosinophil proportion (rho = 0.34, p = 0.0013), and airway sensitivity (rho = 0.39, p = 0.0005). By contrast, sputum MUC5B levels significantly and positively correlated with airway sensitivity (rho = 0.35, p = 0.002) and negatively correlated with airway reactivity (rho = −0.33, p = 0.004). [Conclusions] Sputum MUC5AC is increased by protein levels and involved in airway type 2/eosinophilic inflammation and airway hyperresponsiveness in steroid-untreated patients with mild asthma

    Plasma substance p levels in patients with persistent cough.

    Get PDF
    Background: Substance P (SP) is involved in the pathogenesis of cough in animal models. However, few studies in humans have been reported and the roles of SP in clinical cough remain obscure. Objectives: To clarify the relevance of plasma levels of SP in patients with persistent cough. Methods: We studied 82 patients with cough persisting for at least 3 weeks and 15 healthy controls. Patients were classified as having asthmatic cough (cough-variant asthma and cough-predominant asthma; n = 61) or nonasthmatic cough (n = 21; postinfectious cough, n = 6; gastroesophageal reflux disease, n = 5; idiopathic cough, n = 5, and others, n = 5). Correlations were evaluated between plasma SP levels as measured with ELISA and methacholine airway hyperresponsiveness (airway sensitivity and airway reactivity), capsaicin cough sensitivity, sputum eosinophil and neutrophil counts, and pulmonary function. Results: Plasma SP levels were significantly elevated in patients with both asthmatic and nonasthmatic cough compared with controls [31.1 pg/ml (range 18.0-52.2) and 30.0 pg/ml (range 15.1-50.3) vs. 15.4 pg/ml (range 11.3-23.7); p = 0.003 and p = 0.038, respectively] but did not differ between the two patient groups (p = 0.90). Plasma SP levels correlated with airway sensitivity (threshold dose of methacholine) in the patients with asthmatic cough (r = -0.37, p = 0.005) but not with airway reactivity, cough sensitivity, FEV(1) values, or sputum eosinophil and neutrophil counts in either group. Conclusions: Increased levels of SP in plasma are associated with persistent cough in humans and might be related to airway sensitivity in asthmatic cough

    Development of airflow limitation, dyspnoea, and both in the general population: the Nagahama study

    Get PDF
    Subjects with subclinical respiratory dysfunction who do not meet the chronic obstructive pulmonary disease (COPD) criteria have attracted attention with regard to early COPD intervention. Our aim was to longitudinally investigate the risks for the development of airflow limitation (AFL) and dyspnoea, the main characteristics of COPD, in a large-scale community-based general population study. The Nagahama study included 9789 inhabitants, and a follow-up evaluation was conducted after 5 years. AFL was diagnosed using a fixed ratio (forced expiratory volume in one second (FEV₁)/forced vital capacity (FVC) < 0.7). We enrolled normal subjects aged 40-75 years with no AFL, dyspnoea or prior diagnosis of asthma or COPD at baseline. In total, 5865 subjects were analysed, 310 subjects had subclinical respiratory dysfunction (FEV₁/FVC < the lower limit of normal; n = 57, and FEV₁ < 80% of the predicted value (preserved ratio impaired spirometry); n = 256). A total of 5086 subjects attended the follow-up assessment, and 449 and 1021 subjects developed AFL and dyspnoea, respectively. Of these, 100 subjects developed AFL with dyspnoea. Baseline subclinical respiratory dysfunction was independently and significantly associated with AFL with dyspnoea development within 5 years. Subjects with subclinical respiratory dysfunction are at risk of developing COPD-like features and require careful monitoring
    corecore