558 research outputs found

    Observational Constraints on Kinetic Gravity Braiding from the Integrated Sachs-Wolfe Effect

    Full text link
    The cross-correlation between the integrated Sachs-Wolfe (ISW) effect and the large scale structure (LSS) is a powerful tool to constrain dark energy and alternative theories of gravity. In this paper, we obtain observational constraints on kinetic gravity braiding from the ISW-LSS cross-correlation. We find that the late-time ISW effect in the kinetic gravity braiding model anti-correlates with large scale structures in a wide range of parameters, which clearly demonstrates how one can distinguish modified gravity theories from the LCDM model using the ISW effect. In addition to the analysis based on a concrete model, we investigate a future prospect of the ISW-LSS cross-correlation by using a phenomenological parameterization of modified gravity models.Comment: 7 pages, 3 figures, accepted for publication in Physical Review

    Monodisperse polylactide microcapsules with a single aqueous core prepared via spontaneous emulsification and solvent diffusion

    Get PDF
    A simple approach to preparing monodisperse poly(D,L-lactide) (PDLLA) microcapsules with a single aqueous core is developed. The method is based on automatic water-in-oil-in-water double emulsion formation from oil-in-water single emulsion via spontaneous emulsification which voluntarily disperses part of continuous aqueous phase into the dispersed oil phase dissolving oil-soluble amphiphilic diblock copolymer, poly(D,L-lactide)-b-poly(2-dimethylaminoethyl methacylate)(PDLLA-b-PDMAEMA), followed by coalescence of tiny water droplets within the polymer droplets, coupled with quick precipitation of polymers by diluting the emulsion with water. In this study, we have investigated the effect of PDLLA to PDLLA-b-PDMAEMA ratios and flow rates of each solution during preparing the emulsion on the final morphology and the size of the microcapsules. It was found that the polymer blend ratio played a crucial role in determining internal structure of the microcapsules. The microcapsules size decreased with the increment of the flow rate ratios of the continuous phase to the dispersed phase and eventually reached 10 μm, while maintaining narrow size distribution. In addition, we have demonstrated that the microcapsules can encapsulate both hydrophilic and hydrophobic compounds during the formation

    Continuous fabrication of monodisperse polylactide microspheres by droplet-to-particle technology using microfluidic emulsification and emulsion–solvent diffusion

    Get PDF
    Monodisperse polylactide (PLA) microspheres were continuously fabricated by microfluidic emulsification and subsequent dilution in water. The diameter was precisely tuned from 6 to 50 μm by changing the flow rate of the fluids in microfluidics or the PLA concentration in the dispersed phase. The use of amphiphilic oil-soluble poly(ethylene glycol)-b-polylactide (o-PEG–PLA) as a matrix resulted in a highly porous microsphere morphology, and the porosity was controlled by blending PLA. Therefore, monodisperse PLA microspheres with the predetermined surface porosity were continuously produced by just enough reagents and energy

    Microfluidic Fabrication of Monodisperse Polylactide Microcapsules with Tunable Structures through Rapid Precipitation

    Get PDF
    We describe a versatile and facile route to the continuous production of monodisperse polylactide (PLA) microcapsules with controllable structures. With the combination of microfluidic emulsification, solvent diffusion, and internal phase separation, uniform PLA microcapsules with a perfluorooctyl bromide (PFOB) core were successfully obtained by simply diluting monodisperse ethyl acetate (EA)-in-water emulsion with pure water. Rapid extraction of EA from the droplets into the aqueous phase enabled the solidification of the polymer droplets in a nonequilibrium state during internal phase separation between a concentrated PLA/EA phase and a PFOB phase. Higher-molecular-weight PLA generated structural complexity of the microcapsules, yielding core–shell microcapsules with covered with small PFOB droplets. Removal of the PFOB via freeze drying gave hollow microcapsules with dimpled surfaces. The core–shell ratios and the diameter of these microcapsules could be finely tuned by just adjusting the concentration of PFOB and flow rates on emulsification, respectively. These biocompatible microcapsules with controllable size and structures are potentially applicable in biomedical fields such as drug delivery carriers of many functional molecules

    Research on Evaluation Technique of Patented Invention Using both Technical Value and Economic Value

    Get PDF
    Abstract--The number of patent applications is around 400,000 a year in Japan, and its ratio by the Japanese applicant achieves about 84% out of the total number of patent applications. This ratio is extremely high compared with the ratio filed by each nationality in Europe and in the US. The number of applications or/and the number of registrations, etc. have been often used to evaluate the company's strength using patents, comparing with the competitors strength using patents. However said number does not describe the value of patents. In this study, we propose an evaluation technique of patented inventions using from both technical value such as the number of patent citation, ratio of patented inventions to patent applications, and economical value such as the sales of the commercial products etc., which can be called micro approach. This method makes it possible to give substantial evaluation of patented inventions, and gives an evaluation tool for Intellectual Property management which supports the decision making whether the invention shall be filed or not, reducing the useless patents, which will lead to maintain the company's competitiveness using limited resources effectively. In addition, the proposed method evaluating patents value will contribute to strengthen Technology Management

    Determinants of the daily rhythm of blood fluidity

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens

    Glycosylphosphatidylinositol-Anchored Cell Surface Proteins Regulate Position-Specific Cell Affinity in the Limb Bud

    Get PDF
    AbstractAlthough regional differences in mesenchymal cell affinity in the limb bud represent positional identity, the molecular basis for cell affinity is poorly understood. We found that treatment of the cell surface with bacterial phosphatidylinositol-specific phospholipase C (PI-PLC) could change cell affinity in culture. When PI-PLC was added to the culture medium, segregation of the progress zone (PZ) cells from different stage limb buds was inhibited. Similarly, sorting out of the cells from different positions along the proximodistal (PD) axis of the same stage limb buds was disturbed. Since PI-PLC can remove glycosylphosphatidylinositol (GPI)-anchored membrane bound proteins from the cell surface, the GPI-anchored cell surface proteins may be involved in sorting out. To define the GPI-anchored molecules that determine the segregation of limb mesenchymal cells, we examined the effect of neutralizing antibody on the EphA4 receptor that binds to GPI-anchored cell surface ligands, called ephrin-A. Sorting out of the PZ cells at different stages could be inhibited by the neutralizing antibody to EphA4. These results suggest that EphA4 and its GPI-anchored ligands are, at least in part, involved in sorting out of limb mesenchymal cells with different proximal–distal positional values, and that GPI-anchored cell surface proteins play important roles in determining cell affinity in the limb bud

    Emergencetime and period of chironomid midges occurrlng from an indoor drainage

    Get PDF
    Mass emergence ofchironomidmidges often leads to severe nuisance conditions in food industries. We tried to clarifythe seasonal abundance and the emergence time of chironomids caught by a light traps in this industry. A total of38,708 chironomids was collected duringthe study period, andthe largest number of adult was recorded in fall. In addition, some chironomids were collected even in thewinter. These results suggest that air temperate in winter at this industry is highenough for emergence of chironomids.Asfbr emergence time,the number of chironomids increased around dawn and dusk,and decreased in the day and night. The results of the present study would be useful information for drafting planto prevent outbreaks of nuisancemidges from indoor sewage drain.Article信州大学山地水環境教育研究センター研究報告 6: 109-114(2010)departmental bulletin pape

    Indocyanine green-laden poly(ethylene glycol)-block-polylactide (PEG-b-PLA) nanocapsules incorporating reverse micelles: Effects of PEG-b-PLA composition on the nanocapsule diameter and encapsulation efficiency

    Get PDF
    Reverse micelles are thermodynamically stable systems, with a capacity to encapsulate hydrophilic molecules in their nanosized core, which is smaller than the core generally obtained with water-in-oil-emulsion droplets. Herein, we present a simple technique for the preparation of poly(ethylene glycol)-block-polylactide (PEG-b-PLA) nanocapsules encapsulating a hydrophilic photosensitizer (indocyanine green, ICG), which exploits reverse micelle formation and subsequent emulsion-solvent diffusion. We establish the effect of the PEG-b-PLA composition and the co-surfactant volume on the diameter and water content of the reverse micelles. We demonstrate that the composition of PEG-b-PLA affects also the diameter and encapsulation efficiency of the resulting nanocapsules. We show that the ICG-laden nanocapsules fabricated under the most optimal conditions have a diameter of approximately 100 nm and an ICG encapsulation efficiency of 58%. We believe that the method proposed here is a promising step towards the preparation of hydrophilic drug-laden polymer nanocapsules with a small diameter and therefore suitable for use in drug delivery applications based on enhanced permeability and retention (EPR) effect-driven passive targeting

    Preparation of a Nanoscaled Poly(vinyl alcohol)/Hydroxyapatite/DNA Complex Using High Hydrostatic Pressure Technology for In Vitro and In Vivo Gene Delivery

    Get PDF
    Our previous research showed that poly(vinyl alcohol) (PVA) nanoparticles incorporating DNA with hydrogen bonds obtained by high hydrostatic pressurization are able to deliver DNA without any significant cytotoxicity. To enhance transfection efficiency of PVA/DNA nanoparticles, we describe a novel method to prepare PVA/DNA nanoparticles encapsulating nanoscaled hydroxyapatites (HAps) prepared by high hydrostatic pressurization (980 MPa), which is designed to facilitate endosomal escape induced by dissolving HAps in an endosome. Scanning electron microscopic observation and dynamic light scattering measurement revealed that HAps were significantly encapsulated in PVA/HAp/DNA nanoparticles. The cytotoxicity, cellular uptake, and transgene expression of PVA/HAp/DNA nanoparticles were investigated using COS-7 cells. It was found that, in contrast to PVA/DNA nanoparticles, their internalization and transgene expression increased without cytotoxicity occurring. Furthermore, a similar level of transgene expression between plasmid DNA and PVA/HAp/DNA nanoparticles was achieved using in vivo hydrodynamic injection. Our results show a novel method of preparing PVA/DNA nanoparticles encapsulating HAp nano-crystals by using high hydrostatic pressure technology and the potential use of HAps as an enhancer of the transfection efficiency of PVA/DNA nanoparticles without significant cytotoxicity
    corecore