18 research outputs found

    A versatile scanning photocurrent mapping system to characterize optoelectronic devices based on 2D materials

    Full text link
    The investigation of optoelectronic devices based on two-dimensional materials and their heterostructures is a very active area of investigation with both fundamental and applied aspects involved. We present a description of a home-built scanning photocurrent microscope that we have designed and developed to perform electronic transport and optical measurements of two-dimensional materials based devices. The complete system is rather inexpensive (<10000 EUR) and it can be easily replicated in any laboratory. To illustrate the setup we measure current-voltage characteristics, in dark and under global illumination, of an ultra-thin PN junction formed by the stacking of an n-doped few-layer MoS2 flake onto a p-type MoS2 flake. We then acquire scanning photocurrent maps and by mapping the short circuit current generated in the device under local illumination we find that at zero bias the photocurrent is generated mostly in the region of overlap between the n-type and p-type flakes.Comment: 9 pages, 3 figures, 1 table, supporting informatio

    High-Temperature Coefficient of Resistance in MoxW1&minus;xS2 Thin Film

    No full text
    Despite the use of transition metal dichalcogenides being widespread in various applications, the knowledge and applications of MoxW1&minus;xS2 compounds are relatively limited. In this study, we deposited a MoW alloy on a Si substrate using a sputter system. Consequently, we successfully utilized a furnace to sulfurize the MoW alloy from 800 to 950 &deg;C, which transferred the alloy into a MoxW1&minus;xS2 ternary compound. The Raman spectra of the MoxW1&minus;xS2 samples indicated an additional hybridized Raman peak at 375 cm&minus;1 not present in typical MoS2 and WS2. With increasing sulfurization temperature, the scanning electron microscopy images revealed the surface morphology of the MoxW1&minus;xS2 gradually becoming a sheet-like structure. The X-ray diffraction results showed that the crystal structure of the MoxW1&minus;xS2 tended toward a preferable (002) crystal orientation. The I&ndash;V results showed that the resistance of MoxW1&minus;xS2 increased when the samples were sulfurized at a higher temperature due to the more porous structures generated within the thin film. Furthermore, a high-temperature coefficient of resistance for the MoxW1&minus;xS2 thin film sulfurized at 950 &deg;C was about &minus;1.633%/K&minus;1. This coefficient of resistance in a MoxW1&minus;xS2 thin film indicates its suitability for use in thermal sensors

    Hybrid Enhancement of Surface-Enhanced Raman Scattering Using Few-Layer MoS<sub>2</sub> Decorated with Au Nanoparticles on Si Nanosquare Holes

    No full text
    By combining the excellent biocompatibility of molybdenum disulfide (MoS2), excellent surface-enhanced Raman scattering (SERS) activity of Au nanoparticles (Au NPs), and large surface area of Si nanosquare holes (NSHs), a structure in which MoS2 is decorated with Au NPs on Si NSHs, was proposed for SERS applications. The NSH structure fabricated by e-beam lithography possessed 500 nm of squares and a depth of approximately 90 nm. Consequently, a few-layer MoS2 thin films (2–4 layers) were grown by the sulfurization of the MoO3 thin film deposited on Si NSHs. SERS measurements indicated that MoS2 decorated with Au NPs/Si NSHs provided an extremely low limit of detection (ca. 10−11 M) for R6G, with a high enhancement factor (4.54 × 109) relative to normal Raman spectroscopy. Our results revealed that a large surface area of the NSH structure would probably absorb more R6G molecules and generate more excitons through charge transfer, further leading to the improvement of the chemical mechanism (CM) effect between MoS2 and R6G. Meanwhile, the electromagnetic mechanism (EM) produced by Au NPs effectively enhances SERS signals. The mechanism of the SERS enhancement in the structure is described and discussed in detail. By combining the hybrid effects of both CM and EM to obtain a highly efficient SERS performance, MoS2 decorated with Au NPs/Si NSHs is expected to become a new type of SERS substrate for biomedical detection

    Optical and Transport Properties of Ni-MoS2

    No full text
    In this paper, MoS2 and Ni-MoS2 crystal layers were fabricated by the chemical vapor transport method with iodine as the transport agent. Two direct band edge transitions of excitons at 1.9 and 2.1 eV were observed successfully for both MoS2 and Ni-MoS2 samples using temperature-dependent optical reflectance (R) measurement. Hall effect measurements were carried out to analyze the transport behavior of carriers in MoS2 and Ni-MoS2, which indicate that the Ni-MoS2 sample is n-type and has a higher resistance and lower mobility than the MoS2 sample has. A photoconductivity spectrum was performed which shows an additional Ni doping level existing at 1.2 eV and a higher photocurrent generating only for Ni-MoS2. The differences between MoS2 and Ni-MoS2 could be attributed to the effect of Ni atoms causing small lattice imperfections to form trap states around 1.2 eV. The temperature-dependent conductivity shows the presence of two shallow levels with activation energies (84 and 6.7 meV in MoS2; 57 and 6.5 meV in Ni-MoS2). Therefore, the Ni doping level leads to high resistance, low mobility and small activation energies. A series of experimental results could provide useful guidance for the fabrication of optoelectronic devices using MoS2 structures

    The Role of GaN in the Heterostructure WS<sub>2</sub>/GaN for SERS Applications

    No full text
    In the application of WS2 as a surface–enhanced Raman scattering (SERS) substrate, enhancing the charge transfer (CT) opportunity between WS2 and analyte is an important issue for SERS efficiency. In this study, we deposited few-layer WS2 (2–3 layers) on GaN and sapphire substrates with different bandgap characteristics to form heterojunctions using a chemical vapor deposition. Compared with sapphire, we found that using GaN as a substrate for WS2 can effectively enhance the SERS signal, with an enhancement factor of 6.45 × 104 and a limit of detection of 5 × 10−6 M for probe molecule Rhodamine 6G according to SERS measurement. Analysis of Raman, Raman mapping, atomic force microscopy, and SERS mechanism revealed that The SERS efficiency increased despite the lower quality of the WS2 films on GaN compared to those on sapphire, as a result of the increased number of transition pathways present in the interface between WS2 and GaN. These carrier transition pathways could increase the opportunity for CT, thus enhancing the SERS signal. The WS2/GaN heterostructure proposed in this study can serve as a reference for enhancing SERS efficiency

    Optical Properties of Indium Doeped ZnO Nanowires

    Get PDF
    We report the synthesis of the ZnO nanowires (NWs) with different indium concentrations by using the thermal evaporation method. The gold nanoparticles were used as the catalyst and were dispersed on the silicon wafer to facilitate the growth of the ZnO NWs. High resolution transmission electron microscopy confirms that the ZnO NWs growth relied on vapor-liquid-solid mechanism and energy dispersion spectrum detects the atomic percentages of indium in ZnO NWs. Scanning electron microscopy shows that the diameters of pure ZnO NWs range from 20 to 30 nm and the diameters of ZnO:In were increased to 50–80 nm with increasing indium doping level. X-ray diffraction results point out that the crystal quality of the ZnO NWs was worse with doping higher indium concentration. Photoluminescence (PL) study of the ZnO NWs exhibited main photoemission at 380 nm due to the recombination of excitons in near-band-edge (NBE). In addition, PL results also indicate the slightly blue shift and PL intensity decreasing of NBE emission from the ZnO NWs with higher indium concentrations could be attributed to more donor-induced trap center generations

    High Optical Response of Niobium-Doped WSe<sub>2</sub>-Layered Crystals

    No full text
    The optical properties of WSe2-layered crystals doped with 0.5% niobium (Nb) grown by the chemical vapor transport method were characterized by piezoreflectance (PzR), photoconductivity (PC) spectroscopy, frequency-dependent photocurrent, and time-resolved photoresponse. With the incorporation of 0.5% Nb, the WSe2 crystal showed slight blue shifts in the near band edge excitonic transitions and exhibited strongly enhanced photoresponsivity. Frequency-dependent photocurrent and time-resolved photoresponse were measured to explore the kinetic decay processes of carriers. Our results show the potential application of layered crystals for photodetection devices based on Nb-doped WSe2-layered crystals

    Effect of Lithium Doping on Microstructural and Optical Properties of ZnO Nanocrystalline Films Prepared by the Sol-Gel Method

    No full text
    The Zn1&minus;xLixO (x = 0, 0.01, 0.03, and 0.05) nanocrystalline films were synthesized on silicon (Si) substrates by using the sol-gel method. The crystal structure and surface morphology of these films were investigated by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). We observed that the average grain size was gradually reduced with increasing doping Li content. Photoluminescence (PL) spectra show that increasing the Li content will deteriorate the crystalline quality and result in the decrease of ultraviolet emission from the excitonic recombination and the enhancement of visible emission from the recombination between the intrinsic defects. The current-voltage properties of Zn1&minus;xLixO nanocrystalline films were also studied under dark and photo-illumination for photo-detection applications. The normalized photo-to-dark-current ratio (Iphoto &minus; Idark)/Idark has been enhanced from 315 to 4161 by increasing the Li content of the Zn1&minus;xLixO nanocrystalline films from zero to 0.05

    Doping with Nb enhances the photoresponsivity of WSe2 thin sheets

    No full text
    In this study, we used chemical vapor transport to grow undoped and niobium (Nb)-doped tungsten diselenide (WSe2) thin sheets and then investigated the structural and photoelectronic characteristics of both samples. X-ray photoelectron spectroscopy confirmed the presence of Nb atoms in the Nb-doped WSe2 sample. Hall effect measurements of the transport behavior of the carriers in the undoped and Nb-doped WSe2 indicated that the Nb-doped WSe2 was of p-type and had a higher carrier concentration and lower mobility than the undoped WSe2. The current density–voltage characteristics indicated that doping with Nb led to a decrease in resistance. Photoconductivity measurements revealed that the responsivity of the Nb-doped WSe2 was an order of magnitude greater than that of the undoped WSe2. Thus, doping Nb atoms into WSe2 not only provides effective carriers but also enhances the photoresponsivity significantly. Accordingly, doping WSe2 with Nb atoms would appear to be useful for the fabrication of highly sensitive photodetectors

    Using Si/MoS2 Core-Shell Nanopillar Arrays Enhances SERS Signal

    No full text
    Two-dimensional layered material Molybdenum disulfide (MoS2) exhibits a flat surface without dangling bonds and is expected to be a suitable surface-enhanced Raman scattering (SERS) substrate for the detection of organic molecules. However, further fabrication of nanostructures for enhancement of SERS is necessary because of the low detection efficiency of MoS2. In this paper, period-distribution Si/MoS2 core/shell nanopillar (NP) arrays were fabricated for SERS. The MoS2 thin films were formed on the surface of Si NPs by sulfurizing the MoO3 thin films coated on the Si NP arrays. Scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy were performed to characterize Si/MoS2 core-shell nanostructure. In comparison with a bare Si substrate and MoS2 thin film, the use of Si/MoS2 core-shell NP arrays as SERS substrates enhances the intensity of each SERS signal peak for Rhodamine 6G (R6G) molecules, and especially exhibits about 75-fold and 7-fold enhancements in the 1361 cm−1 peak signal, respectively. We suggest that the Si/MoS2 core-shell NP arrays with larger area could absorb more R6G molecules and provide larger interfaces between MoS2 and R6G molecules, leading to higher opportunity of charge transfer process and exciton transitions. Therefore, the Si/MoS2 core/shell NP arrays could effectively enhance SERS signal and serve as excellent SERS substrates in biomedical detection
    corecore