15 research outputs found
Preferable Forms of Relaxation for Health Promotion, and the Association between Recreational Activities and Self-perceived Health
Little research has been done on the association between relaxation and health. In the present study, by conducting a nationwide cross-sectional survey, we aimed to obtain scientific data on the preferable forms of relaxation for health promotion, and to clarify the associations between specific recreational activities and self-perceived mental and physical health. We selected 4,000 households by stratified random sampling from across Japan in November 2009 and used the interview method to collect data (number of subjects:2,206). The questionnaire contained items on sleep, recreation status, recreational activities, and self-perceived mental and physical health status. We obtained responses from 1,224 adults (response rate:55.5%). Insufficient rest from sleep, short sleep duration (<6h/day), ineffective use of free time, and less free time used for activities other than rest showed independent positive associations with poor mental and physical health. The results of the logistic regression analyses showed significantly low adjusted odds ratios with regard to the status of poor mental and physical health for outings/walking among men (0.33 [95% confidence interval;0.16-0.68] and 0.49 [0.26-0.90], respectively), and for community activities among women (0.19 [0.04-0.79] and 0.27 [0.09-0.77], respectively). Relaxation for the promotion of health should include both passive relaxation (rest) and active relaxation (recreation). In addition, ensuring sufficient sleep duration is important for passive relaxation, and engaging in outings/walking for men and community activities for women are important for active relaxation
Recommended from our members
Hybrid Machine Learning for Scanning Near-field Optical Spectroscopy
The underlying physics behind an experimental observation often lacks a
simple analytical description. This is especially the case for scanning probe
microscopy techniques, where the interaction between the probe and the sample
is nontrivial. Realistic modeling to include the details of the probe is always
exponentially more difficult than its "spherical cow" counterparts. On the
other hand, a well-trained artificial neural network based on real data can
grasp the hidden correlation between the signal and sample properties. In this
work, we show that, via a combination of model calculation and experimental
data acquisition, a physics-infused hybrid neural network can predict the
tip-sample interaction in the widely used scattering-type scanning near-field
optical microscope. This hybrid network provides a long-sought solution for
accurate extraction of material properties from tip-specific raw data. The
methodology can be extended to other scanning probe microscopy techniques as
well as other data-oriented physical problems in general
Recommended from our members
Hybrid Machine Learning for Scanning Near-field Optical Spectroscopy
The underlying physics behind an experimental observation often lacks a
simple analytical description. This is especially the case for scanning probe
microscopy techniques, where the interaction between the probe and the sample
is nontrivial. Realistic modeling to include the details of the probe is always
exponentially more difficult than its "spherical cow" counterparts. On the
other hand, a well-trained artificial neural network based on real data can
grasp the hidden correlation between the signal and sample properties. In this
work, we show that, via a combination of model calculation and experimental
data acquisition, a physics-infused hybrid neural network can predict the
tip-sample interaction in the widely used scattering-type scanning near-field
optical microscope. This hybrid network provides a long-sought solution for
accurate extraction of material properties from tip-specific raw data. The
methodology can be extended to other scanning probe microscopy techniques as
well as other data-oriented physical problems in general
Recommended from our members
Probing subwavelength in-plane anisotropy with antenna-assisted infrared nano-spectroscopy.
Infrared nano-spectroscopy based on scattering-type scanning near-field optical microscopy (s-SNOM) is commonly employed to probe the vibrational fingerprints of materials at the nanometer length scale. However, due to the elongated and axisymmetric tip shank, s-SNOM is less sensitive to the in-plane sample anisotropy in general. In this article, we report an easy-to-implement method to probe the in-plane dielectric responses of materials with the assistance of a metallic disk micro-antenna. As a proof-of-concept demonstration, we investigate here the in-plane phonon responses of two prototypical samples, i.e. in (100) sapphire and x-cut lithium niobate (LiNbO3). In particular, the sapphire in-plane vibrations between 350 cm-1 to 800 cm-1 that correspond to LO phonon modes along the crystal b- and c-axis are determined with a spatial resolution of < λ/10, without needing any fitting parameters. In LiNbO3, we identify the in-plane orientation of its optical axis via the phonon modes, demonstrating that our method can be applied without prior knowledge of the crystal orientation. Our method can be elegantly adapted to retrieve the in-plane anisotropic response of a broad range of materials, i.e. subwavelength microcrystals, van-der-Waals materials, or topological insulators
Recommended from our members
Probing subwavelength in-plane anisotropy with antenna-assisted infrared nano-spectroscopy.
Infrared nano-spectroscopy based on scattering-type scanning near-field optical microscopy (s-SNOM) is commonly employed to probe the vibrational fingerprints of materials at the nanometer length scale. However, due to the elongated and axisymmetric tip shank, s-SNOM is less sensitive to the in-plane sample anisotropy in general. In this article, we report an easy-to-implement method to probe the in-plane dielectric responses of materials with the assistance of a metallic disk micro-antenna. As a proof-of-concept demonstration, we investigate here the in-plane phonon responses of two prototypical samples, i.e. in (100) sapphire and x-cut lithium niobate (LiNbO3). In particular, the sapphire in-plane vibrations between 350 cm-1 to 800 cm-1 that correspond to LO phonon modes along the crystal b- and c-axis are determined with a spatial resolution of < λ/10, without needing any fitting parameters. In LiNbO3, we identify the in-plane orientation of its optical axis via the phonon modes, demonstrating that our method can be applied without prior knowledge of the crystal orientation. Our method can be elegantly adapted to retrieve the in-plane anisotropic response of a broad range of materials, i.e. subwavelength microcrystals, van-der-Waals materials, or topological insulators
Recommended from our members
Infrared nano-imaging of Dirac magnetoexcitons in graphene
Magnetic fields can have profound effects on the motion of electrons in quantum materials. Two-dimensional electron systems subject to strong magnetic fields are expected to exhibit quantized Hall conductivity, chiral edge currents and distinctive collective modes referred to as magnetoplasmons and magnetoexcitons. Generating these propagating collective modes in charge-neutral samples and imaging them at their native nanometre length scales have thus far been experimentally elusive. Here we visualize propagating magnetoexciton polaritons at their native length scales and report their magnetic-field-tunable dispersion in near-charge-neutral graphene. Imaging these collective modes and their associated nano-electro-optical responses allows us to identify polariton-modulated optical and photo-thermal electric effects at the sample edges, which are the most pronounced near charge neutrality. Our work is enabled by innovations in cryogenic near-field optical microscopy techniques that allow for the nano-imaging of the near-field responses of two-dimensional materials under magnetic fields up to 7 T. This nano-magneto-optics approach allows us to explore and manipulate magnetopolaritons in specimens with low carrier doping via harnessing high magnetic fields