488 research outputs found

    Hierarchically Porous Gd3+-Doped CeO2 Nanostructures for the Remarkable Enhancement of Optical and Magnetic Properties

    Get PDF
    Rare earth ion-doped CeO2 has attracted more and more attention because of its special electrical, optical, magnetic, or catalytic properties. In this paper, a facile electrochemical deposition route was reported for the direct growth of the porous Gd-doped CeO2. The formation process of Gd-doped CeO2 composites was investigated. The obtained deposits were characterized by SEM, EDS, XRD, and XPS. The porous Gd3+- doped CeO2 (10 at% Gd) displays a typical type I adsorption isotherm and yields a large specific surface area of 135 m2/g. As Gd3+ ions were doped into CeO2 lattice, the absorption spectrum of Gd3+-doped CeO2 nanocrystals exhibited a red shift compared with porous CeO2 nanocrystals and bulk CeO2, and the luminescence of Gd3+-doped CeO2 deposits was remarkably enhanced due to the presence of more oxygen vacancies. In addition, the strong magnetic properties of Gd-doped CeO2 (10 at% Gd) were observed, which may be caused by Gd3+ ions or more oxygen defects in deposits. In addition, the catalytic activity of porous Gd-doped CeO2 toward CO oxidation was studied

    Technique for bulk Fermiology by photoemission applied to layered ruthenates

    Full text link
    We report the Fermi surfaces of the superconductor Sr2RuO4 and the non-superconductor Sr1.8Ca0.2RuO4 probed by bulk-sensitive high-energy angle-resolved photoemission. It is found that there is one square-shaped hole-like, one square-shaped electron-like and one circle-shaped electron-like Fermi surface in both compounds. These results provide direct evidence for nesting instability giving rise to magnetic fluctuations. Our study clarifies that the electron correlation effects are changed with composition depending on the individual band.Comment: 5 pages, 3 figures including 2 color figure

    High-energy photoemission on Fe3O4: Small polaron physics and the Verwey transition

    Full text link
    We have studied the electronic structure and charge ordering (Verwey) transition of magnetite (Fe3O4) by soft x-ray photoemission. Due to the enhanced probing depth and the use of different surface preparations we are able to distinguish surface and volume effects in the spectra. The pseudogap behavior of the intrinsic spectra and its temperature dependence give evidence for the existence of strongly bound small polarons consistent with both dc and optical conductivity. Together with other recent structural and theoretical results our findings support a picture in which the Verwey transition contains elements of a cooperative Jahn-Teller effect, stabilized by local Coulomb interaction

    Morphologies of three-dimensional shear bands in granular media

    Full text link
    We present numerical results on spontaneous symmetry breaking strain localization in axisymmetric triaxial shear tests of granular materials. We simulated shear band formation using three-dimensional Distinct Element Method with spherical particles. We demonstrate that the local shear intensity, the angular velocity of the grains, the coordination number, and the local void ratio are correlated and any of them can be used to identify shear bands, however the latter two are less sensitive. The calculated shear band morphologies are in good agreement with those found experimentally. We show that boundary conditions play an important role. We discuss the formation mechanism of shear bands in the light of our observations and compare the results with experiments. At large strains, with enforced symmetry, we found strain hardening.Comment: 6 pages 5 figures, low resolution figures

    Critical packing in granular shear bands

    Full text link
    In a realistic three-dimensional setup, we simulate the slow deformation of idealized granular media composed of spheres undergoing an axisymmetric triaxial shear test. We follow the self-organization of the spontaneous strain localization process leading to a shear band and demonstrate the existence of a critical packing density inside this failure zone. The asymptotic criticality arising from the dynamic equilibrium of dilation and compaction is found to be restricted to the shear band, while the density outside of it keeps the memory of the initial packing. The critical density of the shear band depends on friction (and grain geometry) and in the limit of infinite friction it defines a specific packing state, namely the \emph{dynamic random loose packing}

    Quantification of Methane Emissions from Indoor-Fed Fogera Dairy Cows Using Laser Methane Detector

    Get PDF
    Portable laser methane detectors (LMDs) may be an economical means of estimating CH4 emissions from ruminants. Here, we validated an LMD-based approach and then used that approach to evaluate CH4 emissions from indigenous dairy cows in a dryland area of Ethiopia. First, we validated our LMD-based approach in Simmental crossbred beef cattle (n = 2) housed in respiration chambers and fed either a high- or low-concentrate diet. We found that the exhaled air CH4 concentrations measured by LMD were linearly correlated with the CH4 emissions determined by infrared-absorption-based gas analyzer (r2 = 0.55). On the basis of these findings, we constructed an estimation equation to determine CH4 emissions (y, mg min−1) from LMD CH4 concentrations (x, ppm m) as y = 0.4259x + 38.61. Next, we used our validated LMD approach to examine CH4 emissions in Fogera dairy cows grazed for 8 h d−1 (GG, n = 4), fed indoors on natural-grassland hay (CG1, n = 4), or fed indoors on Napier-grass (Pennisetum purpureum) hay (CG2, n = 4). All the cows were supplemented with concentrate feed. Daily CH4 emissions did not differ among the three groups; however, a numerically greater milk yield was obtained from the CG2 cows than from the GG cows, suggesting that Napier-grass hay might be better than natural-grassland hay for indoor feeding. The CG1 cows had higher CH4 emissions per feed intake than the other groups, without significant increases in milk yield and body-weight gain, suggesting that natural-grassland hay cannot be recommended for indoor-fed cows. These findings demonstrate the potential of using LMDs to rapidly and economically evaluate feeding regimens for dairy cows in areas under financial constraint, while taking CH4 emissions into consideration

    Vertical current induced domain wall motion in MgO-based magnetic tunnel junction with low current densities

    Full text link
    Shifting electrically a magnetic domain wall (DW) by the spin transfer mechanism is one of the future ways foreseen for the switching of spintronic memories or registers. The classical geometries where the current is injected in the plane of the magnetic layers suffer from a poor efficiency of the intrinsic torques acting on the DWs. A way to circumvent this problem is to use vertical current injection. In that case, theoretical calculations attribute the microscopic origin of DW displacements to the out-of-plane (field-like) spin transfer torque. Here we report experiments in which we controllably displace a DW in the planar electrode of a magnetic tunnel junction by vertical current injection. Our measurements confirm the major role of the out-of-plane spin torque for DW motion, and allow to quantify this term precisely. The involved current densities are about 100 times smaller than the one commonly observed with in-plane currents. Step by step resistance switching of the magnetic tunnel junction opens a new way for the realization of spintronic memristive devices
    • 

    corecore