19 research outputs found

    Hepatic Transcriptome Analysis of Hepatitis C Virus Infection in Chimpanzees Defines Unique Gene Expression Patterns Associated with Viral Clearance

    Get PDF
    Hepatitis C virus infection leads to a high rate of chronicity. Mechanisms of viral clearance and persistence are still poorly understood. In this study, hepatic gene expression analysis was performed to identify any molecular signature associated with the outcome of hepatitis C virus (HCV) infection in chimpanzees. Acutely HCV-infected chimpanzees with self-limited infection or progression to chronicity were studied. Interferon stimulated genes were induced irrespective of the outcome of infection. Early induction of a set of genes associated with cell proliferation and immune activation was associated with subsequent viral clearance. Specifically, two of the genes: interleukin binding factor 3 (ILF3) and cytotoxic granule-associated RNA binding protein (TIA1), associated with robust T-cell response, were highly induced early in chimpanzees with self-limited infection. Up-regulation of genes associated with CD8+ T cell response was evident only during the clearance phase of the acute self-limited infection. The induction of these genes may represent an initial response of cellular injury and proliferation that successfully translates to a “danger signal” leading to induction of adaptive immunity to control viral infection. This primary difference in hepatic gene expression between self-limited and chronic infections supports the concept that successful activation of HCV-specific T-cell response is critical in clearance of acute HCV infection

    Meta-analysis of archived DNA microarrays identifies genes regulated by hypoxia and involved in a metastatic phenotype in cancer cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metastasis is a major cancer-related cause of death. Recent studies have described metastasis pathways. However, the exact contribution of each pathway remains unclear. Another key feature of a tumor is the presence of hypoxic areas caused by a lack of oxygen at the center of the tumor. Hypoxia leads to the expression of pro-metastatic genes as well as the repression of anti-metastatic genes. As many Affymetrix datasets about metastasis and hypoxia are publicly available and not fully exploited, this study proposes to re-analyze these datasets to extract new information about the metastatic phenotype induced by hypoxia in different cancer cell lines.</p> <p>Methods</p> <p>Affymetrix datasets about metastasis and/or hypoxia were downloaded from GEO and ArrayExpress. AffyProbeMiner and GCRMA packages were used for pre-processing and the Window Welch <it>t </it>test was used for processing. Three approaches of meta-analysis were eventually used for the selection of genes of interest.</p> <p>Results</p> <p>Three complementary approaches were used, that eventually selected 183 genes of interest. Out of these 183 genes, 99, among which the well known <it>JUNB</it>, <it>FOS </it>and <it>TP63</it>, have already been described in the literature to be involved in cancer. Moreover, 39 genes of those, such as <it>SERPINE1 </it>and <it>MMP7</it>, are known to regulate metastasis. Twenty-one genes including <it>VEGFA </it>and <it>ID2 </it>have also been described to be involved in the response to hypoxia. Lastly, DAVID classified those 183 genes in 24 different pathways, among which 8 are directly related to cancer while 5 others are related to proliferation and cell motility. A negative control composed of 183 random genes failed to provide such results. Interestingly, 6 pathways retrieved by DAVID with the 183 genes of interest concern pathogen recognition and phagocytosis.</p> <p>Conclusion</p> <p>The proposed methodology was able to find genes actually known to be involved in cancer, metastasis and hypoxia and, thus, we propose that the other genes selected based on the same methodology are of prime interest in the metastatic phenotype induced by hypoxia.</p

    Peritoneal VEGF-A expression is regulated by TGF-β1 through an ID1 pathway in women with endometriosis

    Get PDF
    VEGF-A, an angiogenic factor, is increased in the peritoneal fluid of women with endometriosis. The cytokine TGF-β1 is thought to play a role in the establishment of endometriosis lesions. Inhibitor of DNA binding (ID) proteins are transcriptional targets of TGF-β1 and ID1 has been implicated in VEGF-A regulation during tumor angiogenesis. Herein, we determined whether peritoneal expression of VEGF-A is regulated by TGF-β1 through the ID1 pathway in women with endometriosis. VEGF-A was measured in peritoneal fluid by ELISA (n = 16). VEGF-A and ID1 expression was examined in peritoneal biopsies (n = 13), and primary peritoneal and immortalized mesothelial cells (MeT5A) by immunohistochemistry, qRT-PCR and ELISA. VEGF-A was increased in peritoneal fluid from women with endometriosis and levels correlated with TGF-β1 concentrations (P < 0.05). VEGF-A was immunolocalized to peritoneal mesothelium and TGF-β1 increased VEGFA mRNA (P < 0.05) and protein (P < 0.05) in mesothelial cells. ID1 was increased in peritoneum from women with endometriosis and TGF-β1 increased concentrations of ID1 mRNA (P < 0.05) in mesothelial cells. VEGF-A regulation through ID1 was confirmed by siRNA in MeT5A cells (P < 0.05). Our data supports role for ID1 in the pathophysiology of endometriosis, as an effector of TGFβ1 dependent upregulation of VEGF-A, and highlights a novel potential therapeutic target
    corecore