13 research outputs found

    Impedance adaptation for optimal robot–environment interaction

    Get PDF
    In this paper, impedance adaptation is investigated for robots interacting with unknown environments. Impedance control is employed for the physical interaction between robots and environments, subject to unknown and uncertain environments dynamics. The unknown environments are described as linear systems with unknown dynamics, based on which the desired impedance model is obtained. A cost function that measures the tracking error and interaction force is defined, and the critical impedance parameters are found to minimize it. Without requiring the information of the environments dynamics, the proposed impedance adaptation is feasible in a large number of applications where robots physically interact with unknown environments. The validity of the proposed method is verified through simulation studies

    Design of the Upper Limb Rehabilitation Support Device Using a Pneumatic Cylinder

    No full text
    corecore