228 research outputs found

    Rabi oscillations in the four-level double-dot structure under the influence of the resonant pulse

    Full text link
    We study theoretically the quantum dynamics of an electron in the symmetric four-level double-dot structure under the influence of the monochromatic resonant pulse. The probability amplitudes of the eigenstates relevant for the quantum dynamics are found from the solution of the non-stationary Schr\"odinger equation. The first-order correction term to the solution obtained through the rotating wave approximation is calculated. The three-level double-dot dynamics and the two-level single-dot dynamics, as well as the off-resonant excitation process, are derived from the general formulae for corresponding choices of the pulse and structure parameters. The results obtained may be applied to the solid-state qubit design.Comment: Accepted for publication in Phys. Rev.

    Entanglement and quantum state engineering in the optically driven two-electron double-dot structure

    Full text link
    We study theoretically the quantum dynamics of two interacting electrons in the symmetric double-dot structure under the influence of the bichromatic resonant pulse. The state vector evolution is studied for two different pulse designs. It is shown that the laser pulse can generate the effective exchange coupling between the electron spins localized in different dots. Possible applications of this effect to the quantum information processing (entanglement generation, quantum state engineering) are discussed.Comment: 28 pages, 3 figure

    Selective electron transfer between the quantum dots under the resonant pulse

    Full text link
    The coherent quantum dynamics of an electron in the quantum-dot ring structure under the resonant electromagnetic pulse is studied theoretically. A possibility of the selective electron transfer between any two dots is demonstrated. The transfer probability as a function of the pulse and dot parameters is calculated. It is shown that this probability can be close to unity. The factors lowering the transfer probability in real systems are discussed. The results obtained may be used in the engineering of novel nanoelectronic devices for quantum bits processing.Comment: Presented at the International Symposium "Quantum Informatics - 2004", Moscow, October 5-8, 2004; to appear in Fiz. Tekh. Poluprovodn. (St. Petersburg

    Charge qubit entanglement via conditional single-electron transfer in an array of quantum dots

    Full text link
    We propose a novel scheme to generate entanglement among quantum-dot-based charge qubits via sequential electron transfer in an auxiliary quantum dot structure whose transport properties are conditioned by qubit states. The transfer protocol requires the utilization of resonant optical pulses combined with an appropriate voltage gate pattern. As an example illustrating the application of this scheme, we examine the nine-qubit Shor code state preparation together with the error syndrome measurement

    Resonant optical electron transfer in one-dimensional multiwell structures

    Full text link
    We consider coherent single-electron dynamics in the one-dimensional nanostructure under resonant electromagnetic pulse. The structure is composed of two deep quantum wells positioned at the edges of structure and separated by a sequence of shallow internal wells. We show that complete electron transfer between the states localized in the edge wells through one of excited delocalized states can take place at discrete set of times provided that the pulse frequency matches one of resonant transition frequencies. The transfer time varies from several tens to several hundreds of picoseconds and depends on the structure and pulse parameters. The results obtained in this paper can be applied to the developments of the quantum networks used in quantum communications and/or quantum information processing.Comment: 25 pages,16 figure

    Quantum register based on structured diamond waveguide with NV centers

    Full text link
    We propose a scheme of quantum information processing with NV-centers embedded inside diamond nanostructure. Single NV-center placed in the cavity plays role of an electron spin qubit which evolution is controlled by microwave pulses. Besides, it couples to the cavity field via optical photon exchange. In their turn, neighbor cavities are coupled to each other through the photon hopping to form a bus waveguide mode. This waveguide mode overlaps with all NV-centers. Entanglement between distant centers is organized by appropriate tuning of their optical frequency relative to the waveguide frequency via electrostatic control without lasers. We describe the controlled-Z operation that is by one order of magnitude faster than in off-resonant laser-assisted schemes proposed earlier. Spectral characteristics of the one-dimensional chain of microdisks are calculated by means of numerical modeling, using the approach analogous to the tight-binding approximation in the solid-state physics. The data obtained allow to optimize the geometry of the microdisk array for the effective implementation of quantum operations.Comment: to be published in Proc. of SPI

    Single-qubit operations in the double-donor structure driven by optical and voltage pulses

    Full text link
    We study theoretically the quantum dynamics of an electron in the singlyionized double-donor structure in the semiconductor host under the influence of laser pulses whose frequencies are close to structure resonant frequencies. This system can be used as a charge qubit where the logical states are defined by the lowest two energy states of the remaining valence electron localized around one or another donor. The quantum operations are performed via resonant or Raman-like transitions between the localized (qubit) states and the excited states delocalized over the structure, combined with phase shifts between qubit states generated by voltage pulses. The possibility of realization of arbitrary single-qubit rotations is demonstrated.Comment: to appear in Phys. Rev.

    Resonant-pulse operations on the buried donor charge qubits in semiconductors

    Full text link
    A new scheme is proposed for rotations of a double-donor charge qubit whose logical states are defined by the two lowest energy states of a single electron localized around one or another donor. It is shown that making use of the microwave pulses tuned to the resonance with an auxiliary excited molecular level allows for implementation of various one-qubit operations in very short times. Decoherence effects are analyzed by the example of the P2+_2^+:Si system and shown to be weak enough for experimental realization of this scheme being possible.Comment: 4 pages, 1 figure, to appear in PR

    Application of alternative <i>de novo</i> motif recognition models for analysis of structural heterogeneity of transcription factor binding sites: a case study of FOXA2 binding sites

    Get PDF
    The most popular model for the search of ChIP-seq data for transcription factor binding sites (TFBS) is the positional weight matrix (PWM). However, this model does not take into account dependencies between nucleotide occurrences in different site positions. Currently, two recently proposed models, BaMM and InMoDe, can do as much. However, application of these models was usually limited only to comparing their recognition accuracies with that of PWMs, while none of the analyses of the co-prediction and relative positioning of hits of different models in peaks has yet been performed. To close this gap, we propose the pipeline called MultiDeNA. This pipeline includes stages of model training, assessing their recognition accuracy, scanning ChIP-seq peaks and their classif ication based on scan results. We applied our pipeline to 22 ChIP-seq datasets of TF FOXA2 and considered PWM, dinucleotide PWM (diPWM), BaMM and InMoDe models. The combination of these four models allowed a signif icant increase in the fraction of recognized peaks compared to that for the sole PWM model: the increase was 26.3 %. The BaMM model provided the main contribution to the recognition of sites. Although the major fraction of predicted peaks contained TFBS of different models with coincided positions, the medians of the fraction of peaks containing the predictions of sole models were 1.08, 0.49, 4.15 and 1.73 % for PWM, diPWM, BaMM and InMoDe, respectively. Thus, FOXA2 BSs were not fully described by only a sole model, which indicates theirs heterogeneity. We assume that the BaMM model is the most successful in describing the structure of the FOXA2 BS in ChIP-seq datasets under study
    • …
    corecore