167 research outputs found

    In-Depth Molecular Characterization of Mycobacterium tuberculosis from New Delhi – Predominance of Drug Resistant Isolates of the ‘Modern’ (TbD1−) Type

    Get PDF
    BACKGROUND: India has the highest estimated burden of tuberculosis in the world, accounting for 21% of all tuberculosis cases world-wide. However, due to lack of systematic analysis using multiple markers the available information on the genomic diversity of Mycobacterium tuberculosis in India is limited. METHODOLOGY/PRINCIPAL FINDINGS: Thus, 65 M. tuberculosis isolates from New Delhi, India were analyzed by spoligotyping, MIRU-VNTR, large deletion PCR typing and single nucleotide polymorphism analysis (SNP). The Central Asian (CAS) 1 _DELHI sub-lineage was the most prevalent sub-lineage comprising 46.2% (n = 30) of all isolates, with shared-type (ST) 26 being the most dominant genotype comprising 24.6% (n = 16) of all isolates. Other sub-lineages observed were: East-African Indian (EAI)-5 (9.2%, n = 6), EAI6_BGD1 (6.2%, n = 4), EAI3_IND, CAS and T1 with 6.2% each (n = 4 each), Beijing (4.6%, n = 3), CAS2 (3.1%, n = 2), and X1 and X2 with 1 isolate each. Genotyping results from five isolates (7.7%) did not match any existing spoligopatterns, and one isolate, ST124, belonged to an undefined lineage. Twenty-six percent of the isolates belonged to the TbD1+ PGG1 genogroup. SNP analysis of the pncA gene revealed a CAS-lineage specific silent mutation, S65S, which was observed for all CAS-lineage isolates (except two ST26 isolates) and in 1 orphan. Mutations in the pncA gene, conferring resistance to pyrazinamide, were observed in 15.4% of all isolates. Collectively, mutations in the rpoB gene, the katG gene and in both rpoB and katG genes, conferring resistance to rifampicin and isoniazid, respectively, were more frequent in CAS1_DELHI isolates compared to non-CAS_DELHI isolates (OR: 3.1, CI95% [1.11, 8.70], P = 0.045). The increased frequency of drug-resistance could not be linked to the patients' history of previous anti-tuberculosis treatment (OR: 1.156, CI95% [0.40, 3.36], P = 0.79). Fifty-six percent of all new tuberculosis patients had mutations in either the katG gene or the rpoB gene, or in both katG and rpoB genes. CONCLUSION: CAS1_DELHI isolates circulating in New Delhi, India have a high frequency of mutations in the rpoB and katG genes. A silent mutation (S65S) in the pncA gene can be used as a putative genetic marker for CAS-lineage isolates

    Activation of an NLRP3 Inflammasome Restricts Mycobacterium kansasii Infection

    Get PDF
    Mycobacterium kansasii has emerged as an important nontuberculous mycobacterium pathogen, whose incidence and prevalence have been increasing in the last decade. M. kansasii can cause pulmonary tuberculosis clinically and radiographically indistinguishable from that caused by Mycobacterium tuberculosis infection. Unlike the widely-studied M. tuberculosis, little is known about the innate immune response against M. kansasii infection. Although inflammasome activation plays an important role in host defense against bacterial infection, its role against atypical mycobacteria remains poorly understood. In this report, the role of inflammasome activity in THP-1 macrophages against M. kansasii infection was studied. Results indicated that viable, but not heat-killed, M. kansasii induced caspase-1-dependent IL-1β secretion in macrophages. The underlying mechanism was found to be through activation of an inflammasome containing the NLR (Nod-like receptor) family member NLRP3 and the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD). Further, potassium efflux, lysosomal acidification, ROS production and cathepsin B release played a role in M. kansasii-induced inflammasome activation. Finally, the secreted IL-1β derived from caspase-1 activation was shown to restrict intracellular M. kansasii. These findings demonstrate a biological role for the NLRP3 inflammasome in host defense against M. kansasii
    • …
    corecore