120 research outputs found

    Production and partial characterization of chitinase from a halotolerant Planococcus rifitoensis strain M2-26

    Full text link
    peer reviewedThis paper is the first to investigate the production and partial characterization of the chitinase enzyme from a moderately halophilic bacterium Planococcus rifitoensis strain M2-26, earlier isolated from a shallow salt lake in Tunisia. The impact of salt, salinity concentration, pH, carbon and nitrogen sources on chitinase production and activity have been determined. This is the first report on a high salt-tolerant chitinase from P. rifitoensis, since it was active at high salinity (from 5 to 30% NaCl) as well as in the absence of salt. This enzyme showed optimal activity at 70 C and retained up to 82 and 66% of its original activity at 80 or 90 C, respectively. The activity of the enzyme was also shown over a wide pH range (from 5 to 11). For characterization of the enzyme activity, the chitinase secreted in the culture supernatant was partially purified. The preliminary study of the concentrated dialysed supernatant on native PAGE showed at least three chitinases produced by strain M2-26, with highest activity approximately at 65 kDa. Thus, the thermo-tolerant and high salt-tolerant chitinases produced by P. rifitoensis strain M2-26 could be useful for application in diverse areas such as biotechnology and agro-industry

    A Chitinase from Aeromonas veronii CD3 with the Potential to Control Myxozoan Disease

    Get PDF
    Background: The class Myxosporea encompasses about 2,400 species, most of which are parasites of fish and cause serious damage in aquaculture. Due to the concerns about food safety issues and limited knowledge of Myxozoa life cycle and fish immune system, no chemicals, antibiotics or immune modulators are available to control myxozoa infection. Therefore, little can be done once Myxozoa establishment has occurred. Methodology/Principal Findings: In this paper we isolated Aeromonas veronii CD3 with significant myxospore shell valvedegrading ability from pond sediment. A 3,057-bp full-length chitinase gene was consequently cloned, and the corresponding mature, recombinant chitinase (ChiCD3) produced by Escherichia coli had substantial chitinase activity. The deduced sequence of ChiCD3 contained one catalytic domain, two chitin-binding domains, and one putative signal peptide. ChiCD3 had an optimal activity at 50uC and pH 6.0, and retained more than 50 % of its optimal activity under warm water aquaculture conditions (,30uC and pH,7.0). After incubation with ChiCD3, 38.064.8 % of the myxospores had damaged shell valves, whereas myxospores incubated with commercially available chitinases remained intact. Conclusion/Significance: This study reveals a new strategy to control myxozoan disease. ChiCD3 that has capacity to damage the shell valve of myxospores can be supplemented into fish feed and used to control Myxozoa-induced disease

    Flanking signal and mature peptide residues influence signal peptide cleavage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Signal peptides (SPs) mediate the targeting of secretory precursor proteins to the correct subcellular compartments in prokaryotes and eukaryotes. Identifying these transient peptides is crucial to the medical, food and beverage and biotechnology industries yet our understanding of these peptides remains limited. This paper examines the most common type of signal peptides cleavable by the endoprotease signal peptidase I (SPase I), and the residues flanking the cleavage sites of three groups of signal peptide sequences, namely (i) eukaryotes (Euk) (ii) Gram-positive (Gram+) bacteria, and (iii) Gram-negative (Gram-) bacteria.</p> <p>Results</p> <p>In this study, 2352 secretory peptide sequences from a variety of organisms with amino-terminal SPs are extracted from the manually curated SPdb database for analysis based on physicochemical properties such as p<it>I</it>, aliphatic index, GRAVY score, hydrophobicity, net charge and position-specific residue preferences. Our findings show that the three groups share several similarities in general, but they display distinctive features upon examination in terms of their amino acid compositions and frequencies, and various physico-chemical properties. Thus, analysis or prediction of their sequences should be separated and treated as distinct groups.</p> <p>Conclusion</p> <p>We conclude that the peptide segment recognized by SPase I extends to the start of the mature protein to a limited extent, upon our survey of the amino acid residues surrounding the cleavage processing site. These flanking residues possibly influence the cleavage processing and contribute to non-canonical cleavage sites. Our findings are applicable in defining more accurate prediction tools for recognition and identification of cleavage site of SPs.</p

    Novel Insights into the Diversity of Catabolic Metabolism from Ten Haloarchaeal Genomes

    Get PDF
    BACKGROUND: The extremely halophilic archaea are present worldwide in saline environments and have important biotechnological applications. Ten complete genomes of haloarchaea are now available, providing an opportunity for comparative analysis. METHODOLOGY/PRINCIPAL FINDINGS: We report here the comparative analysis of five newly sequenced haloarchaeal genomes with five previously published ones. Whole genome trees based on protein sequences provide strong support for deep relationships between the ten organisms. Using a soft clustering approach, we identified 887 protein clusters present in all halophiles. Of these core clusters, 112 are not found in any other archaea and therefore constitute the haloarchaeal signature. Four of the halophiles were isolated from water, and four were isolated from soil or sediment. Although there are few habitat-specific clusters, the soil/sediment halophiles tend to have greater capacity for polysaccharide degradation, siderophore synthesis, and cell wall modification. Halorhabdus utahensis and Haloterrigena turkmenica encode over forty glycosyl hydrolases each, and may be capable of breaking down naturally occurring complex carbohydrates. H. utahensis is specialized for growth on carbohydrates and has few amino acid degradation pathways. It uses the non-oxidative pentose phosphate pathway instead of the oxidative pathway, giving it more flexibility in the metabolism of pentoses. CONCLUSIONS: These new genomes expand our understanding of haloarchaeal catabolic pathways, providing a basis for further experimental analysis, especially with regard to carbohydrate metabolism. Halophilic glycosyl hydrolases for use in biofuel production are more likely to be found in halophiles isolated from soil or sediment
    corecore