46 research outputs found

    Identification of the Tandem Running Pheromone in Diacamma sp. from Japan (Hymenoptera, Formicidae)

    Get PDF
    The Japanese queenless ponerine ant Diacamma sp. from Japan employs tandem running during nest relocation, in which a leader ant guides nestmate followers one at a time. We replicated this process by presenting one entire abdominal part of a leader, except for the petiole to followers. When the abdominal part had been rinsed with n-hexane, however, it attracted significantlyfewer followers. This suggests that chemicals on the leader’s abdominal part evoke tandem running. Dissection of abdominal major exocrine glands revealed that the Dufour’s gland was the source of this chemical signal. The chemicals were eluted in the hydrocarbon fraction by silica-gel column chromatography, and the quantitatively major component was estimated as heptadecene (C17:1) through gas chromatograph-mass spectrometer (GCMS) analysis. The position of the double bond was estimated to be between the 8th and 9th carbons through analysis of the epoxidized compound. Only (Z)-isomers of 8-heptadecene evoked tandem running in the followers. We identified the tandem running pheromone of this ant species to be (Z)-8- heptadecene. (163

    Quantitative environmental DNA metabarcoding shows high potential as a novel approach to quantitatively assess fish community

    Get PDF
    水に含まれる環境DNAから「どんな魚」が「どれだけいるか」を同時に推定 --定量的な魚類群集モニタリングを容易に実現--. 京都大学プレスリリース. 2023-01-20.The simultaneous conservation of species richness and evenness is important to effectively reduce biodiversity loss and keep ecosystem health. Environmental DNA (eDNA) metabarcoding has been used as a powerful tool for identifying community composition, but it does not necessarily provide quantitative information due to several methodological limitations. Thus, the quantification of eDNA through metabarcoding is an important frontier of eDNA-based biomonitoring. Particularly, the qMiSeq approach has recently been developed as a quantitative metabarcoding method and has attracted much attention due to its usefulness. The aim here was to evaluate the performance of the qMiSeq approach as a quantitative monitoring tool for fish communities by comparing the quantified eDNA concentrations with the results of fish capture surveys. The eDNA water sampling and the capture surveys using the electrical shocker were conducted at a total of 21 sites in four rivers in Japan. As a result, we found significant positive relationships between the eDNA concentrations of each species quantified by qMiSeq and both the abundance and biomass of each captured taxon at each site. Furthermore, for seven out of eleven taxa, a significant positive relationship was observed between quantified DNA concentrations by sample and the abundance and/or biomass. In total, our results demonstrated that eDNA metabarcoding with the qMiSeq approach is a suitable and useful tool for quantitative monitoring of fish communities. Due to the simplicity of the eDNA analysis, the eDNA metabarcoding with qMiSeq approach would promote further growth of quantitative monitoring of biodiversity

    Efficacy of Lactococcus lactis strain plasma (LC-Plasma) in easing symptoms in patients with mild COVID-19: protocol for an exploratory, multicentre, double-blinded, randomised controlled trial (PLATEAU study)

    Get PDF
    Introduction The COVID-19 pandemic has been a major concern worldwide; however, easily accessible treatment options for patients with mild COVID-19 remain limited. Since the oral intake of Lactococcus lactis strain plasma (LC-Plasma) enhances both the innate and acquired immune systems through the activation of plasmacytoid dendritic cells (pDCs), we hypothesised that the oral intake of LC-Plasma could aid the relief or prevention of symptoms in patients with asymptomatic or mild COVID-19. Methods and analysis This is an exploratory, multicentre, double-blinded, randomised, placebo-controlled trial. This study was initiated in December 2021 and concludes in April 2023. The planned number of enrolled subjects is 100 (50 subjects×2 groups); subject enrolment will be conducted until October 2022. Patients with asymptomatic or mild COVID-19 will be enrolled and randomly assigned in a 1:1 ratio to group A (oral intake of LC-Plasma-containing capsule, 200 mg/day, for 14 days) or group B (oral intake of placebo capsule, for 14 days). The primary endpoint is the change in subjective symptoms measured by the severity score. Secondary endpoints include SARS-CoV-2 viral loads, biomarkers for pDC activation, serum SARS-CoV-2-specific antibodies, serum cytokines, interferon and interferon-inducible antiviral effectors and the proportion of subjects with emergency room visits to medical institutions or who are hospitalised. Ethics and dissemination The study protocol was approved by the Clinical Research Review Board of Nagasaki University, in accordance with the Clinical Trials Act of Japan. The study will be conducted in accordance with the Declaration of Helsinki, the Clinical Trials Act, and other current legal regulations in Japan. Written informed consent will be obtained from all the participants. The results of this study will be reported in journal publications

    The Effects of Dietary Supplementation of Lactococcus lactis Strain Plasma on Skin Microbiome and Skin Conditions in Healthy Subjects—A Randomized, Double-Blind, Placebo-Controlled Trial

    No full text
    (1) Background: Lactococcus lactis strain Plasma (LC-Plasma) is a unique strain which directly activates plasmacytoid dendritic cells, resulting in the prevention against broad spectrum of viral infection. Additionally, we found that LC-Plasma intake stimulated skin immunity and prevents Staphylococcus aureus epicutaneous infection. The aim of this study was to investigate the effect of LC-Plasma dietary supplementation on skin microbiome, gene expression in the skin, and skin conditions in healthy subjects. (2) Method: A randomized, double-blind, placebo-controlled, parallel-group trial was conducted. Seventy healthy volunteers were enrolled and assigned into two groups receiving either placebo or LC-Plasma capsules (approximately 1 × 1011 cells/day) for 8 weeks. The skin microbiome was analyzed by NGS and qPCR. Gene expression was analyzed by qPCR and skin conditions were diagnosed by dermatologists before and after intervention. (3) Result: LC-Plasma supplementation prevented the decrease of Staphylococcus epidermidis and Staphylococcus pasteuri and overgrowth of Propionibacterium acnes. In addition, LC-Plasma supplementation suggested to increase the expression of antimicrobial peptide genes but not tight junction genes. Furthermore, the clinical scores of skin conditions were ameliorated by LC-Plasma supplementation. (4) Conclusions: Our findings provided the insights that the dietary supplementation of LC-Plasma might have stabilizing effects on seasonal change of skin microbiome and skin conditions in healthy subjects

    Modulation of Innate Immunity by lignin-Carbohydrate, a Novel TLR4 Ligand, Results in Augmentation of Mucosal IgA and Systemic IgG Production

    No full text
    Previous study revealed that a specific lignin-carbohydrate preparation, named as lignin-rich enzyme lignin (LREL) derived from plant husk, is a novel toll-like receptor 4 ligand and shows a potent immune-stimulatory activity against dendritic cells (DCs) in vitro. In this report, we investigated immune-stimulatory activity of LREL in vivo. Single intraperitoneal (i.p.) or oral treatment of LREL elicited activation of systemic and mucosal DCs, which were accompanied by significant elevation of cell surface activation markers and ratio of IL-12p40 producing cells. In addition, LREL-fed mice showed not only mucosal DCs activation but also significant increase of IFN-γ+ CD4+ T cells in mesenteric lymph node (MLN), respectively. We further examined the effect of LREL oral immunization in combination with ovalbumin (OVA) on the activation of acquired immune system. In LREL administered group, total mucosal IgA concentration was significantly increased, while antigen-specific immunoglobulin A (IgA) concentration was not changed between groups. On the other hand, both total and antigen-specific IgG concentrations in plasma were significantly increased in the LREL administered group. Taken together, oral treatment of LREL is able to affect mucosal and systemic antibodies induction and might be useful for effective immune-stimulatory functional foods and mucosal vaccine adjuvant
    corecore