132 research outputs found
胆汁酸吸着薬であるセベラマーは、内因性のリポポリサッカライドの過負荷を軽減して、非アルコール性脂肪性肝炎の肝線維化を改善する。
Despite the use of various pharmacotherapeutic strategies, fibrosis due to nonalcoholic steatohepatitis (NASH) remains an unsatisfied clinical issue. We investigated the effect of sevelamer, a hydrophilic bile acid sequestrant, on hepatic fibrosis in a murine NASH model. Male C57BL/6J mice were fed a choline-deficient, L-amino acid-defined, high-fat (CDHF) diet for 12 weeks with or without orally administered sevelamer hydrochloride (2% per diet weight). Histological and biochemical analyses revealed that sevelamer prevented hepatic steatosis, macrophage infiltration, and pericellular fibrosis in CDHF-fed mice. Sevelamer reduced the portal levels of total bile acid and inhibited both hepatic and intestinal farnesoid X receptor activation. Gut microbiome analysis demonstrated that sevelamer improved a lower α-diversity and prevented decreases in Lactobacillaceae and Clostridiaceae as well as increases in Desulfovibrionaceae and Enterobacteriaceae in the CDHF-fed mice. Additionally, sevelamer bound to lipopolysaccharide (LPS) in the intestinal lumen and promoted its fecal excretion. Consequently, the sevelamer treatment restored the tight intestinal junction proteins and reduced the portal LPS levels, leading to the suppression of hepatic toll-like receptor 4 signaling pathway. Furthermore, sevelamer inhibited the LPS-mediated induction of fibrogenic activity in human hepatic stellate cells in vitro. Collectively, sevelamer inhibited the development of murine steatohepatitis by reducing hepatic LPS overload.博士(医学)・甲第779号・令和3年3月15日© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)
リファキシミンとルビプロストンの併用は脂肪性肝炎ラットの腸管バリア機能を修復し肝線維化を抑制する
Background: Although gut-derived lipopolysaccharide (LPS) affects the progression of non-alcoholic steatohepatitis (NASH) pathogenesis, few studies have focused on this relationship to develop treatments for NASH. Aims: To explore the effects of combination with rifaximin and lubiprostone on NASH liver fibrosis through the modulation of gut barrier function. Methods: To induce steatohepatitis, F344 rats were fed a choline-deficient l -amino acid-defined (CDAA) diet for 12 weeks and received oral administration of rifaximin and/or lubiprostone. Histological, molec- ular, and fecal microbial analyses were performed. Barrier function in Caco-2 cells were assessed by in vitro assays. Results: Combination rifaximin/lubiprostone treatment significantly suppressed macrophage expansion, proinflammatory responses, and liver fibrosis in CDAA-fed rats by blocking hepatic translocation of LPS and activation of toll-like receptor 4 signaling. Rifaximin and lubiprostone improved intestinal perme- ability via restoring tight junction proteins (TJPs) with the intestinal activation of pregnane X receptor and chloride channel-2, respectively. Moreover, this combination increased the abundance of Bacteroides, Lactobacillus, and Faecalibacterium as well as decreased that of Veillonella resulting in an increase of fecal short-chain fatty acids and a decrease of intestinal sialidase activity. Both agents also directly suppressed the LPS-induced barrier dysfunction and depletion of TJPs in Caco-2 cells. Conclusion: The combination of rifaximin and lubiprostone may provide a novel strategy for treating NASH-related fibrosis.博士(医学)・甲第860号・令和5年3月15
TGR5活性化はアナグリプチンによる糖尿病ラットに対する肝線維化抑制効果を増強する
Hyperglycemia and hyperinsulinemia activate the proliferative potential of hepatic stellate cells (HSCs) and promote hepatic fibrosis. Dipeptidyl peptidase-4 (DPP-4) inhibitors, antidiabetic agents, reportedly inhibit the HSC proliferation. Additionally, Takeda G protein-coupled receptor 5 (TGR5) agonists induce the systemic release of glucagon-like peptides from intestinal L cells, which maintains glycemic homeostasis. This study assessed the combined effect of TGR5 agonist and DPP-4 inhibitor on diabetes-based liver fibrosis development. Male diabetic rats received intraperitoneal injection of porcine serum (PS) to induce liver fibrosis, and they were orally administered the following agents: oleanolic acid (OA) as a TGR5 agonist, anagliptin (ANA) as a DPP-4 inhibitor, and a combination of both agents. Treatment with OA or ANA significantly improved glycemic status and attenuated intrahepatic steatosis and lipid peroxidation in diabetic rats. PS-induced liver fibrosis development was also drastically suppressed by treatment with either agent, and the combination of both reciprocally enhanced the antifibrotic effect. Fecal microbiome demonstrated that both agents inhibited the increase in the Firmicutes/Bacteroidetes ratio, an indicator of dysbiosis related to metabolic syndromes. Furthermore, ANA directly inhibited in vitro HSC proliferative and profibrogenic activities. Collectively, TGR5 agonist and DPP-4 inhibitor appears to be a novel strategy against liver fibrosis under diabetic conditions.博士(医学)・甲第766号・令和3年3月15日© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)
リファキシミンは腸-肝臓-筋肉軸の調節により肝硬変ラットの骨格筋萎縮に対するL-カルニチンを介した予防効果を増強する
The gut‑liver‑muscle axis is associated with the
development of sarcopenia in liver cirrhosis. The present
study aimed to illustrate the combined effects of rifaximin
and L‑carnitine on skeletal muscle atrophy in cirrhotic rats
with steatohepatitis. For this purpose, a total of 344 Fischer
rats were fed a choline‑deficient L‑amino acid‑defined
(CD AA) diet with the daily oral administration of rifaximin
(100 mg/kg) and/or L‑carnitine (200 mg/kg), and measurements
of psoas muscle mass index and forelimb grip strength
were performed. After feeding for 12 weeks, blood samples,
and liver, ileum and gastrocnemius muscle tissues were
harvested. The effects of L‑carnitine on rat myocytes were
assessed using in vitro assays. Treatment with rifaximin
attenuated hyperammonemia and liver fibrosis in the
CD AA‑fed rats. Moreover, it improved intestinal permeability
with the restoration of tight junction proteins and
suppressed the lipopolysaccharide (LPS)‑mediated hepatic
macrophage activation and pro‑inflammatory response. In
addition, rifaximin prevented skeletal muscle mass atrophy
and weakness by decreasing intramuscular myostatin and
pro‑inflammatory cytokine levels. Moreover, rifaximin
synergistically enhanced the L‑carnitine‑mediated improvement
of skeletal muscle wasting by promoting the production
of insulin‑like growth factor‑1 and mitochondrial biogenesis,
resulting in the inhibition of the ubiquitin‑proteasome system
(UPS). The in vitro assays revealed that L‑carnitine directly
attenuated the impairment of mitochondrial biogenesis,
thereby inhibiting the UPS in rat myocytes that were stimulated
with LPS or tumor necrosis factor‑α. On the whole, the
present study demonstrates that the combination of rifaximin
with L‑carnitine may provide a clinical benefit for liver
cirrhosis‑related sarcopenia.博士(医学)・甲第863号・令和5年3月15
Construction of an All-in-one Double-conditional shRNA Expression Vector
Gene silencing by RNA interference (RNAi) is widely used for assessing gene function. An important advance in the RNAi field was the discovery that plasmid-based RNAi can substitute for synthetic small interfering RNA in vitro and in vivo. However, constitutive and ubiquitous knockdown of gene expression by RNAi in mice can limit the scope of experiments because this process can lead to embryonic lethality, or result in compensatory overexpression of other genes such that no phenotypic abnormalities occur. Either way, analyses of the physiological roles of the gene of interest in adult mice are not possible. To overcome these limitations, we previously constructed a double-conditional short-hairpin RNA (shRNA) expression vector that can regulate shRNA expression in a spatio-temporal manner with a tetracycline-inducible floxed stuffer sequence selectively excised by application of Cre recombinase. In this study, we aimed to modify this vector to create an all-in-one vector that produces double-conditional transgenic mice through a single round of gene transfer to fertilized eggs. We added a coding region for nuclear localizing Cre (NCre) recombinase with a multi-cloning site for a cell-specific promoter into the double-conditional short-hairpin RNA (shRNA) expression vector that we previously constructed. Using Escherichia coli, we confirmed successful construction of the vector. First, we confirmed isopropyl-β-D-thiogalactopyranoside-induced expression of NCre recombinase through the lac operon as a specific promoter by western blotting. Second, we confirmed functional recombination of the floxed sequence of loxP-like TATA-lox by analysing restriction enzyme-digested fragments. This all-in-one double-conditional shRNA expression vector will be useful for reversible in vitro and in vivo knockdown of target gene expression, in target cells via promoter-specific expression of NCre, and at specific times by tetracycline application
- …