35 research outputs found

    Novel Lung Growth Strategy with Biological Therapy Targeting Airway Remodeling in Childhood Bronchial Asthma

    Get PDF
    Anti-inflammatory therapy, centered on inhaled steroids, suppresses airway inflammation in asthma, reduces asthma mortality and hospitalization rates, and achieves clinical remission in many pediatric patients. However, the spontaneous remission rate of childhood asthma in adulthood is not high, and airway inflammation and airway remodeling persist after remission of asthma symptoms. Childhood asthma impairs normal lung maturation, interferes with peak lung function in adolescence, reduces lung function in adulthood, and increases the risk of developing chronic obstructive pulmonary disease (COPD). Early suppression of airway inflammation in childhood and prevention of asthma exacerbations may improve lung maturation, leading to good lung function and prevention of adult COPD. Biological drugs that target T-helper 2 (Th2) cytokines are used in patients with severe pediatric asthma to reduce exacerbations and airway inflammation and improve respiratory function. They may also suppress airway remodeling in childhood and prevent respiratory deterioration in adulthood, reducing the risk of COPD and improving long-term prognosis. No studies have demonstrated a suppressive effect on airway remodeling in childhood severe asthma, and further clinical trials using airway imaging analysis are needed to ascertain the inhibitory effect of biological drugs on airway remodeling in severe childhood asthma. In this review, we describe the natural prognosis of lung function in childhood asthma and the risk of developing adult COPD, the pathophysiology of allergic airway inflammation and airway remodeling via Th2 cytokines, and the inhibitory effect of biological drugs on airway remodeling in childhood asthma

    Severe pediatric asthma with a poor response to omalizumab: a report of three cases and three-dimensional bronchial wall analysis

    Get PDF
    Omalizumab is used for the treatment of persistent severe allergic asthma in adults and children. However, some patients remain symptomatic even after omalizumab treatment. In bronchial asthma, chronic inflammation of the bronchial wall causes thickening of the airway wall, resulting from irreversible airway remodeling. Progression of airway remodeling causes airflow obstruction, leading to treatment resistance. We report three Japanese children with severe asthma who had a poor response to omalizumab treatment. They had a long period of inadequate management of asthma before initiating omalizumab. Even after omalizumab treatment, their symptoms persisted, and the parameters of spirometry tests did not improve. We hypothesized that omalizumab was less effective in these patients because airway wall remodeling had already progressed. We retrospectively evaluated the bronchial wall thickness using a three-dimensional bronchial wall analysis with chest computed tomography. The bronchial wall thickness was increased in these cases compared with six responders. Progressed airway wall thickness caused by airway remodeling may be associated with a poor response to omalizumab in children with severe asthma

    Reactive Oxygen Species and Antioxidative Defense in Chronic Obstructive Pulmonary Disease

    Get PDF
    The respiratory system is continuously exposed to endogenous and exogenous oxidants. Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation of the airways, leading to the destruction of lung parenchyma (emphysema) and declining pulmonary function. It is increasingly obvious that reactive oxygen species (ROS) and reactive nitrogen species (RNS) contribute to the progression and amplification of the inflammatory responses related to this disease. First, we described the association between cigarette smoking, the most representative exogenous oxidant, and COPD and then presented the multiple pathophysiological aspects of ROS and antioxidative defense systems in the development and progression of COPD. Second, the relationship between nitric oxide system (endothelial) dysfunction and oxidative stress has been discussed. Third, we have provided data on the use of these biomarkers in the pathogenetic mechanisms involved in COPD and its progression and presented an overview of oxidative stress biomarkers having clinical applications in respiratory medicine, including those in exhaled breath, as per recent observations. Finally, we explained the findings of recent clinical and experimental studies evaluating the efficacy of antioxidative interventions for COPD. Future breakthroughs in antioxidative therapy may provide a promising therapeutic strategy for the prevention and treatment of COPD.</p

    Anaphylaxis after jellyfish ingestion with no history of stings: a pediatric case report

    Get PDF
    Background Jellyfish stings are known to induce allergic skin reactions; however, case reports of anaphylaxis after jellyfish ingestion have been increasing, especially in Asian countries. Some cases of anaphylaxis after jellyfish ingestion have been reported in patients with a previous history of frequent jellyfish stings. Herein, we report a pediatric patient with anaphylaxis after jellyfish ingestion with no history of jellyfish stings. Case presentation A 14-year-old girl developed two episodes of anaphylaxis, and her diet diaries revealed that edible jellyfish was common to the meals in both the anaphylaxis events. A skin prick test using five types of edible jellyfish products revealed a positive reaction to some jellyfish, and anaphylaxis was observed after the ingestion of jellyfish in an oral food challenge test. She had no history of jellyfish stings or frequent swimming in the ocean. The basophil activation test showed positive results on stimulation with extracts from various types of edible jellyfish. We observed serum immunoglobulin E (IgE) reactivity to purified jellyfish collagen and jellyfish acid-soluble extracts. Moreover, immunoblotting analysis showed IgE reactivity to two bands at approximately 40 and 70 kDa using purified jellyfish collagen, which may be a causative antigen. Conclusions Edible salted jellyfish can be one of the causative foods of anaphylaxis. Clinicians should be aware of the possibility of anaphylactic reactions due to jellyfish ingestion even without a history of jellyfish stings

    Current Insights into Atopic March

    Get PDF
    The incidence of allergic diseases is increasing, and research on their epidemiology, pathophysiology, and the prevention of onset is urgently needed. The onset of allergic disease begins in infancy with atopic dermatitis and food allergy and develops into allergic asthma and allergic rhinitis in childhood; the process is defined as "atopic march ". Atopic march is caused by multiple immunological pathways, including allergen exposure, environmental pollutants, skin barrier dysfunction, type 2 inflammation, and oxidative stress, which promote the progression of atopic march. Using recent evidence, herein, we explain the involvement of allergic inflammatory conditions and oxidative stress in the process of atopic march, its epidemiology, and methods for prevention of onset

    Hemophagocytic lymphohistiocytosis complicating invasive pneumococcal disease: a pediatric case report

    Get PDF
    Background Hemophagocytic lymphohistiocytosis (HLH) is an infrequent but life-threatening disease due to excessive immune activation. Secondary HLH can be triggered by infections, autoimmune diseases, and malignant diseases. Streptococcus pneumoniae is a pathogenic bacterium responsible for invasive pneumococcal disease (IPD) such as meningitis and bacteremia. Although the pneumococcal conjugate vaccine (PCV) has led to reductions in IPD incidence, cases of IPD caused by serotypes not included in PCV are increasing. There are few reports of secondary HLH caused by IPD in previously healthy children. We herein report a rare case of a previously healthy boy with secondary HLH complicating IPD of serotype 23A, which is not included in the pneumococcal 13-valent conjugate vaccine (PCV-13). Case presentation An 11-month-old boy who had received three doses of PCV-13 was hospitalized with prolonged fever, bilateral otitis media, neutropenia and elevated C-reactive protein (CRP) levels. Blood culture on admission revealed S. pneumoniae, leading to a diagnosis of IPD. HLH was diagnosed based on a prolonged fever, neutropenia, anemia, hepatosplenomegaly, hemophagocytosis in the bone marrow, and elevated serum levels of triglycerides, ferritin, and soluble interleukin-2 receptor. He received broad-spectrum antibiotics and intravenous immunoglobulins for IPD and high-dose steroid pulse therapy and cyclosporine A for HLH; thereafter, his fever resolved, and laboratory findings improved. The serotype of the isolated S. pneumoniae was 23A, which is not included in PCV-13. Conclusions It is important to consider secondary HLH as a complication of IPD cases with febrile cytopenia or hepatosplenomegaly, and appropriate treatment for HLH should be started without delay

    Roles of Oxidative Injury and Nitric Oxide System Derangements in Kawasaki Disease Pathogenesis: A Systematic Review

    Get PDF
    Kawasaki disease (KD) is an acute febrile vasculitis that occurs mostly in children younger than five years. KD involves multiple intricately connected inflammatory reactions activated by a cytokine cascade. Despite therapeutic advances, coronary artery damage may develop in some patients, who will be at risk of clinical cardiovascular events and even sudden death. The etiology of KD remains unclear; however, it may involve both genetic and environmental factors leading to aberrant inflammatory responses. Given the young age of onset, prenatal or perinatal exposure may be etiologically relevant. Multisystem inflammatory syndrome in children, a post-infectious hyper-inflammatory disorder associated with severe acute respiratory syndrome coronavirus 2, has features that overlap with those of KD. Available evidence indicates that vascular endothelial dysfunction is a critical step in the sequence of events leading to the development of cardiovascular lesions in KD. Oxidative stress and the dysregulation of the nitric oxide (NO) system contribute to the pathogenesis of inflammatory responses related to this disease. This review provides current evidence and concepts highlighting the adverse effects of oxidative injury and NO system derangements on the initiation and progression of KD and potential therapeutic strategies for cardiovascular pathologies in affected children

    Correlation between national surveillance and search engine query data on respiratory syncytial virus infections in Japan

    Get PDF
    Background The respiratory syncytial virus (RSV) disease burden is significant, especially in infants and children with an underlying disease. Prophylaxis with palivizumab is recommended for these high-risk groups. Early recognition of a RSV epidemic is important for timely administration of palivizumab. We herein aimed to assess the correlation between national surveillance and Google Trends data pertaining to RSV infections in Japan. Methods The present, retrospective survey was performed between January 1, 2018 and November 14, 2021 and evaluated the correlation between national surveillance data and Google Trends data. Joinpoint regression was used to identify the points at which changes in trends occurred. Results A strong correlation was observed every study year (2018 [r = 0.87, p < 0.01], 2019 [r = 0.83, p < 0.01], 2020 [r = 0.83, p < 0.01], and 2021 [r = 0.96, p < 0.01]). The change-points in the Google Trends data indicating the start of the RSV epidemic were observed earlier than by sentinel surveillance in 2018 and 2021 and simultaneously with sentinel surveillance in 2019. No epidemic surge was observed in either the Google Trends or the surveillance data from 2020. Conclusions Our data suggested that Google Trends has the potential to enable the early identification of RSV epidemics. In countries without a national surveillance system, Google Trends may serve as an alternative early warning system

    Inhibitory Effects of Edaravone, a Free Radical Scavenger, on Cytokine-induced Hyperpermeability of Human Pulmonary Microvascular Endothelial Cells:A Comparison with Dexamethasone and Nitric Oxide Synthase Inhibitor

    Get PDF
    Lung hyperpermeability affects the development of acute respiratory distress syndrome (ARDS), but therapeutic strategies for the control of microvascular permeability have not been established. We examined the effects of edaravone, dexamethasone, and N-monomethyl-L-arginine (L-NMMA) on permeability changes in human pulmonary microvascular endothelial cells (PMVEC) under a hypercytokinemic state. Human PMVEC were seeded in a Boyden chamber. After monolayer confluence was achieved, the culture media were replaced respectively by culture media containing edaravone, dexamethasone, and L-NMMA. After 24-h incubation, the monolayer was stimulated with tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). Fluorescein-labeled dextran was added. Then the trans-human PMVEC leak was measured. Expressions of vascular endothelial-cadherin (VE-cadherin) and zonula occludens-1 protein (ZO-1) were evaluated using real-time quantitative polymerase chain reaction and immunofluorescence microscopy. The results showed that TNF-α+IL-1β markedly increased pulmonary microvascular permeability. Pretreatment with edaravone, dexamethasone, or L-NMMA attenuated the hyperpermeability and inhibited the cytokine-induced reduction of VE-cadherin expression on immunofluorescence staining. Edaravone and dexamethasone increased the expression of ZO-1 at both the mRNA and protein levels. Edaravone and dexamethasone inhibited the permeability changes of human PMVEC, at least partly through an enhancement of VE-cadherin. Collectively, these results suggest a potential therapeutic approach for intervention in patients with ARDS
    corecore