8 research outputs found
Purinergic signalling and immune cells
This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells
ATP release from non-excitable cells
All cells release nucleotides and are in one way or another involved in local autocrine and paracrine regulation of organ function via stimulation of purinergic receptors. Significant technical advances have been made in recent years to quantify more precisely resting and stimulated adenosine triphosphate (ATP) concentrations in close proximity to the plasma membrane. These technical advances are reviewed here. However, the mechanisms by which cells release ATP continue to be enigmatic. The current state of knowledge on different suggested mechanisms is also reviewed. Current evidence suggests that two separate regulated modes of ATP release co-exist in non-excitable cells: (1) a conductive pore which in several systems has been found to be the channel pannexin 1 and (2) vesicular release. Modes of stimulation of ATP release are reviewed and indicate that both subtle mechanical stimulation and agonist-triggered release play pivotal roles. The mechano-sensor for ATP release is not yet defined