81 research outputs found

    The role of RND-type efflux pumps in multidrug-resistant mutants of Klebsiella pneumoniae

    Get PDF
    The emergence of multidrug-resistant Klebsiella pneumoniae is a worldwide problem. K. pneumoniae possesses numerous resistant genes in its genome. We isolated mutants resistant to various antimicrobials in vitro and investigated the importance of intrinsic genes in acquired resistance. The isolation frequency of the mutants was 10(-7)-10(-9). Of the multidrug-resistant mutants, hyper-multidrug-resistant mutants (EB256-1, EB256-2, Nov1-8, Nov2-2, and OX128) were identified, and accelerated efflux activity of ethidium from the inside to the outside of the cells was observed in these mutants. Therefore, we hypothesized that the multidrug efflux pump, especially RND-type efflux pump, would be related to changes of the phenotype. We cloned all RND-type multidrug efflux pumps from the K. pneumoniae genome and characterized them. KexEF and KexC were powerful multidrug efflux pumps, in addition to AcrAB, KexD, OqxAB, and EefABC, which were reported previously. It was revealed that the expression of eefA was increased in EB256-1 and EB256-2: the expression of oqxA was increased in OX128; the expression of kexF was increased in Nov2-2. It was found that a region of 1,485 bp upstream of kexF, was deleted in the genome of Nov2-2. K. pneumoniae possesses more potent RND-multidrug efflux systems than E. coli. However, we revealed that most of them did not contribute to the drug resistance of our strain at basic levels of expression. On the other hand, it was also noted that the overexpression of these pumps could lead to multidrug resistance based on exposure to antimicrobial chemicals. We conclude that these pumps may have a role to maintain the intrinsic resistance of K. pneumoniae when they are overexpressed. The antimicrobial chemicals selected many resistant mutants at the same minimum inhibitory concentration (MIC) or a concentration slightly higher than the MIC. These results support the importance of using antibiotics at appropriate concentrations at clinical sites

    Effects of the order of exposure to antimicrobials on the incidence of multidrug-resistant Pseudomonas aeruginosa

    Get PDF
    Multidrug-resistant Pseudomonas aeruginosa (MDRP) is one of the most important pathogens in clinical practice. To clarify the mechanisms contributing to its emergence, we isolated MDRPs using the P. aeruginosa PAO1, the whole genome sequence of which has already been elucidated. Mutant strains resistant to carbapenems, aminoglycosides, and new quinolones, which are used to treat P. aeruginosa infections, were isolated; however, none met the criteria for MDRPs. Then, PAO1 strains were exposed to these antimicrobial agents in various orders and the appearance rate of MDRP varied depending on the order of exposure; MDRPs more frequently appeared when gentamicin was applied before ciprofloxacin, but were rarely isolated when ciprofloxacin was applied first. Exposure to ciprofloxacin followed by gentamicin increased the expression of MexCD-OprJ, an RND-type multidrug efflux pump, due to the NfxB mutation. In contrast, exposure to gentamicin followed by ciprofloxacin resulted in more mutations in DNA gyrase. These results suggest that the type of quinolone resistance mechanism is related to the frequency of MDRP and that the risk of MDRP incidence is highly dependent on the order of exposure to gentamicin and ciprofloxacin

    Comprehensive analysis of resistance-nodulation-cell division superfamily (RND) efflux pumps from Serratia marcescens, Db10

    Get PDF
    We investigated the role of the resistance-nodulation-cell division superfamily (RND) efflux system on intrinsic multidrug resistance in Serratia marcescens. We identified eight putative RND efflux system genes in the S. marcescens Db10 genome that included the previously characterized systems, sdeXY, sdeAB, and sdeCDE. Six out of the eight genes conferred multidrug resistance on KAM32, a drug hypersensitive strain of Escherichia coil. Five out of the eight genes conferred resistance to benzalkonium, suggesting the importance of RND efflux systems in biocide resistance in S. marcescens. The energy-dependent efflux activities of five of the pumps were examined using a rhodamine 6G efflux assay. When expressed in the toiC-deficient strain of E. coil, KAM43, none of the genes conferred resistance on E. coil. When hasF, encoding the S. marcescens ToIC ortholog, was expressed in KAM43, all of the genes conferred resistance on E. coil, suggesting that HasF is a major outer membrane protein that is used by all RND efflux systems in this organism. We constructed a sdeXY deletion mutant from a derivative strain of the clinically isolated multidrug-resistant S. marcescens strain and found that the sdeXY deletion mutant was sensitive to a broad spectrum of antimicrobial agents

    Conserved hydrophobic amino acid residues in the N-terminal region of DnaA protein are involved in DnaA-DnaA interaction.

    No full text
    We previously reported that a leucine-zipper-like structure (I26, L33 and L40) located in the N-terminal region of DnaA is essential for the duplex opening at oriC by DnaA. In this study, we focused on three other conserved hydrophobic amino acid residues, L3, L10 and L17, and examined the function of DnaA proteins mutated in these amino acid residues. DnaA427 (L17S) and DnaA413 (L3S, L10S and L17S) were inactive for oriC DNA replication both in vitro and in vivo. Although these mutant DnaA proteins maintained their binding activities for both ATP and oriC, they were unable to induce the opening of duplex DNA at oriC. Glutathione-S-transferase (GST)-fused wild-type DnaA interacted with wild-type DnaA but not with DnaA427 and DnaA413. Based on these results, we propose that conserved hydrophobic amino acid residues in the N-terminal region of DnaA are involved in DnaA oligomerization, in which DnaA-DnaA interaction is required
    • …
    corecore