39 research outputs found
Fabrication of magnetic tunnel junctions with a metastable bcc Co3Mn disordered alloy as a bottom electrode
We fabricated MgO barrier magnetic tunnel junctions (MTJs) with a Co3Mn alloy bottom and FeCoB top electrodes. The (001)-oriented epitaxial films of the metastable bcc Co3Mn disordered alloys obtained showed saturation magnetization of approximately 1640 emu/cm3. The transmission electron microscopy showed that the MgO barrier was epitaxially grown on the Co3Mn electrode. Tunnel magnetoresistance of approximately 150% was observed at room temperature after the annealing of MTJs at 350ā¦C, indicating that bcc Co3Mn alloys have relatively high spin polarization
Very Low Nucleation Rates of Glucose Isomerase Crystals under Microgravity in the International Space Station
In situ observation of the nucleation and growth of glucose isomerase (GI) crystals under microgravity was conducted using an optical microscope during the first flight of the Advanced Nano Step project undertaken in the International Space Station (ISS). Very low apparent nucleation rates (Jā) of GI crystals in the solution and on the substrate of the growth container were confirmed compared with those on the ground. In particular, Jā of GI crystals in the solution were a few times lower than that on the substrate. The growth rates (R) of the {101} faces of GI crystals on the substrate and the apparent growth rates (Rā) in the solution were measured. The very low nucleation rates allowed us to successfully measure R at a very high supersaturation region (up to ln(C/Ce) = 6), at which R cannot be measured on the ground
Development of the photomultiplier tube readout system for the first Large-Sized Telescope of the Cherenkov Telescope Array
The Cherenkov Telescope Array (CTA) is the next generation ground-based very
high energy gamma-ray observatory. The Large-Sized Telescope (LST) of CTA
targets 20 GeV -- 1 TeV gamma rays and has 1855 photomultiplier tubes (PMTs)
installed in the focal plane camera. With the 23 m mirror dish, the night sky
background (NSB) rate amounts to several hundreds MHz per pixel. In order to
record clean images of gamma-ray showers with minimal NSB contamination, a fast
sampling of the signal waveform is required so that the signal integration time
can be as short as the Cherenkov light flash duration (a few ns). We have
developed a readout board which samples waveforms of seven PMTs per board at a
GHz rate. Since a GHz FADC has a high power consumption, leading to large heat
dissipation, we adopted the analog memory ASIC "DRS4". The sampler has 1024
capacitors per channel and can sample the waveform at a GHz rate. Four channels
of a chip are cascaded to obtain deeper sampling depth with 4096 capacitors.
After a trigger is generated in a mezzanine on the board, the waveform stored
in the capacitor array is subsequently digitized with a low speed (33 MHz) ADC
and transferred via the FPGA-based Gigabit Ethernet to a data acquisition
system. Both a low power consumption (2.64 W per channel) and high speed
sampling with a bandwidth of 300 MHz have been achieved. In addition, in
order to increase the dynamic range of the readout we adopted a two gain system
achieving from 0.2 up to 2000 photoelectrons in total. We finalized the board
design for the first LST and proceeded to mass production. Performance of
produced boards are being checked with a series of quality control (QC) tests.
We report the readout board specifications and QC results.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
Porphyrināuptake in liposomes and living cells using an exchange method with cyclodextrin
The waterāsolubilisation of porphyrin derivatives is very important for biological applications. Although liposomal drug carriers for porphyrin derivatives have shown significant promise in the field of medicinal chemistry (e.g., as sensitisers for photodynamic therapy), it is currently not possible to prepare lipidāmembraneāincorporated tetraphenylporphyrin (TPP) with a high concentration of TPP using conventional methods. In this study, we have succeeded in preparing lipid-membraneāincorporated TPP and zinc(II) tetraphenylporphyrin (ZnTPP) from the corresponding TPP or ZnTPPā¢cyclodextrin complex using the exchange method in lipidāmembranes composed of liposomes. Furthermore, the exchange method allowed for the incorporation of TPP or ZnTPP into the plasma membranes of HeLa cells. However, it was not possible to prepare lipidāmembraneāincorporated porphyrin derivatives with polar and hydrophilic groups in the meso positions using this exchange reaction.Electronic supplementary information (ESI) available: Experimental procedures, 1H NMR spectra, DLS measurements, cryo-TEM images, phase contrast and fluorescence images. See DOI: 10.1039/c5ra24985This work was supported by JSPS KAKENHI a GrantāināAid for Scientific Research (B) (Grant No. 25288037) and a GrantāināAid for Young Scientists (A) (Grant No. 24681028)
Magnetic tunnel junctions with metastable bcc Co3Mn electrodes
We studied magnetic tunnel junctions (MTJs) with a MgO(001) barrier and metastable bcc Co3Mn(001) disordered alloy electrodes. A tunnel magnetoresistance (TMR) ratio was approximately 200{250% observed at room temperature.We successfully observed the TMR ratio greater than 600% at 10 K which was higher than the past reported value of MgO-based MTJs with ultrathin bcc Co(001) electrodes. However our experimental value was still much lower than the past theoretical prediction in bcc Co/MgO/Co(001) MTJs. We discuss some differences in the bulk band structure affecting the TMR effect for bcc Co and bcc Co3Mn
Five biopsy specimens from the proximal part of the tumor reliably determine HER2 protein expression status in gastric cancer
Background: National guidelines recommend trastuzumab for treatment of patients with metastatic HER2-positive gastric cancer (GC). There is currently no guideline indicating the number of biopsy specimens and the location from which they should be obtained to reliably determine the human epidermal growth factor receptorĀ 2 (HER2) status in GC. The aim of this pilot study was (a) to quantify HER2-positive tumor cells in different tumor regions to assess the spatial heterogeneity of HER2 expression and (b) to establish the required number of biopsy specimens and the location from which they should be obtained within the tumor to achieve concordance between HER2 expression status in the biopsy specimens and the resection specimen. Methods: HER2 expression was quantified in six different regions of 24 HER2-positive GC and in six virtual biopsy specimens from different luminal regions. Intratumoral regional heterogeneity and concordance between HER2 status in the biopsy specimens and the resection specimen were analyzed. Results: HER2-positive cells were more frequent in the luminal tumor surface compared with deeper layers (pĀ <Ā 0.001). GCs with differentiated histological features were more commonly HER2 positive (pĀ <Ā 0.001). Assessment of HER2 expression status in five biopsy specimens was sufficient to achieve 100Ā % concordance between the biopsy specimens and the resection specimen. Conclusions: This is the first study to suggest preferential HER2 positivity at the luminal surface in GC and to establish a minimum number of biopsy specimens needed to obtain a biopsy HER2 result which is identical to that from the whole tumor. Our study suggests that HER2 testing in five tumor-containing endoscopic biopsy specimens from the proximal (oral) part of the tumor is advisable. The results from this pilot study require validation in a prospective study
Clonal evolution and clinical implications of genetic abnormalities in blastic transformation of chronic myeloid leukaemia
Blast crisis (BC) predicts dismal outcomes in patients with chronic myeloid leukaemia (CML). Although additional genetic alterations play a central role in BC, the landscape and prognostic impact of these alterations remain elusive. Here, we comprehensively investigate genetic abnormalities in 136 BC and 148 chronic phase (CP) samples obtained from 216 CML patients using exome and targeted sequencing. One or more genetic abnormalities are found in 126 (92.6%) out of the 136 BC patients, including the RUNX1-ETS2 fusion and NBEAL2 mutations. The number of genetic alterations increase during the transition from CP to BC, which is markedly suppressed by tyrosine kinase inhibitors (TKIs). The lineage of the BC and prior use of TKIs correlate with distinct molecular profiles. Notably, genetic alterations, rather than clinical variables, contribute to a better prediction of BC prognosis. In conclusion, genetic abnormalities can help predict clinical outcomes and can guide clinical decisions in CML
Prevention of hypoglycemia by intermittent-scanning continuous glucose monitoring device combined with structured education in patients with type 1 diabetes mellitus : A randomized, crossover trial
Aims: We conducted a randomized, crossover trial to compare intermittent-scanning continuous glucose monitoring (isCGM) device with structured education (Intervention) to self-monitoring of blood glucose (SMBG) (Control) in the reduction of time below range.
Methods: This crossover trial involved 104 adults with type 1 diabetes mellitus (T1DM) using multiple daily injections. Participants were randomly allocated to either sequence Intervention/Control or sequence Control/Intervention. During the Intervention period which lasted 84 days, participants used the first-generation FreeStyle Libre (Abbott Diabetes Care, Alameda, CA, USA) and received structured education on how to prevent hypoglycemia based on the trend arrow and by frequent sensor scanning (ā„10 times a day). Confirmatory SMBG was conducted before dosing insulin. The Control period lasted 84 days. The primary endpoint was the decrease in the time below range (TBR; <70 mg/dL).
Results: The time below range was significantly reduced in the Intervention arm compared to the Control arm (2.42 Ā± 1.68 h/day [10.1 %Ā±7.0 %] vs 3.10 Ā± 2.28 h/day [12.9 %Ā±9.5 %], P = 0.012). The ratio of high-risk participants with low blood glucose index >5 was significantly reduced (8.6 % vs 23.7 %, P < 0.001).
Conclusions: The use of isCGM combined with structured education significantly reduced the time below range in patients with T1DM