26 research outputs found

    Seed-specific expression of truncated OsGAD2 produces GABA-enriched rice grains that influence a decrease in blood pressure in spontaneously hypertensive rats

    Get PDF
    Gamma-aminobutyric acid (GABA) is a four-carbon amino acid that is commonly present in living organisms and functions as a major inhibitory neurotransmitter in mammals. It is understood to have a potentially anti-hypertensive effect in mammals. GABA is synthesized from glutamate by glutamate decarboxylase (GAD). In plants, GAD is regulated via its calmodulin-binding domain (CaMBD) by Ca2+/CaM. We have previously reported that a C-terminal truncated version of one of the five rice GAD isoforms, GAD2ΔC, revealed higher enzymatic activity in vitro and that its over-expression resulted in exceptionally high GABA accumulation (Akama and Takaiwa, J Exp Bot 58:2699–2607, 2007). In this study, GAD2ΔC, under the control of the rice glutelin promoter (GluB-1), was introduced into rice cells via Agrobacterium-mediated transformation to produce transgenic rice lines. Analysis of the free amino acid content of rice grains revealed up to about a 30-fold higher level of GABA than in non-transformed rice grains. There were also very high levels of various free protein amino acids in the seeds. GABA-enriched rice grains were milled to a fine powder for oral administration to spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto rats (WKYs). Six weeks of administration showed that transgenic rice brings about a 20 mmHg decrease in blood pressure in two different kinds of SHRs, while there was no significant hypotensive effect in WKYs. These results suggest an alternative way to control and/or cure hypertension in humans with GABA-enriched rice as part of a common daily diet

    Serum C-reactive protein and thioredoxin levels in subjects with mildly reduced glomerular filtration rate

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic kidney disease (CKD) is a newly recognized high-risk condition for cardiovascular disease (CVD), and previous studies reported the changes in inflammation and oxidative stress in advanced stages of CKD. We compared the levels of serum biomarkers for inflammation and oxidative stress between subjects with normal and mildly reduced glomerular filtration rate (GFR).</p> <p>Methods</p> <p>The subjects were 182 participants of a health check-up program including those with normal (≥ 90 mL/min/1.73 m<sup>2</sup>, N = 79) and mildly reduced eGFR (60-89 mL/min/1.73 m<sup>2</sup>, N = 103) which was calculated based on serum creatinine, age and sex. We excluded those with reduced eGFR < 60 mL/min/1.73 m<sup>2</sup>. No one had proteinuria. We measured serum levels of C-reactive protein (CRP) and thioredoxin (TRX) as the markers of inflammation and oxidative stress, respectively.</p> <p>Results</p> <p>As compared with subjects with normal eGFR, those with mildly reduced eGFR had increased levels of both CRP and TRX. Also, eGFR was inversely correlated with these biomarkers. The associations of eGFR with these biomarkers remained significant after adjustment for age and sex. When adjustment was done for eight possible confounders, CRP showed significant association with systolic blood pressure, high density lipoprotein cholesterol (HDL-C) and non-HDL-C, whereas TRX was associated with sex significantly, and with eGFR and systolic blood pressure at borderline significance.</p> <p>Conclusions</p> <p>We showed the increased levels of CRP and TRX in subjects with mildly reduced eGFR. The eGFR-CRP link and the eGFR-TRX link appeared to be mediated, at least partly, by the alterations in blood pressure and plasma lipids in these subjects.</p
    corecore