85 research outputs found

    Activin in the Brain Modulates Anxiety-Related Behavior and Adult Neurogenesis

    Get PDF
    Activin, a member of the transforming growth factor-β superfamily, is an endocrine hormone that regulates differentiation and proliferation of a wide variety of cells. In the brain, activin protects neurons from ischemic damage. In this study, we demonstrate that activin modulates anxiety-related behavior by analyzing ACM4 and FSM transgenic mice in which activin and follistatin (which antagonizes the activin signal), respectively, were overexpressed in a forebrain-specific manner under the control of the αCaMKII promoter. Behavioral analyses revealed that FSM mice exhibited enhanced anxiety compared to wild-type littermates, while ACM4 mice showed reduced anxiety. Importantly, survival of newly formed neurons in the subgranular zone of adult hippocampus was significantly decreased in FSM mice, which was partially rescued in ACM4/FSM double transgenic mice. Our findings demonstrate that the level of activin in the adult brain bi-directionally influences anxiety-related behavior. These results further suggest that decreases in postnatal neurogenesis caused by activin inhibition affect an anxiety-related behavior in adulthood. Activin and its signaling pathway may represent novel therapeutic targets for anxiety disorder as well as ischemic brain injury

    ALK7 is a novel marker for adipocyte differentiation

    Get PDF
    Transforming growth factor-β (TGF-β) family members regulate a variety of cellular functions and play important roles in cell differentiation. Activin receptor-like kinase 7 (ALK7), a receptor for TGF-β family members, was initially cloned from rats as an orphan receptor and has been recently shown to be a type I receptor for nodal, activin B and activin AB. ALK7 is expressed not only in neurons, but also in insulin-producing islet β cells and white and brown adipose tissues however, the specific functions of ALK7 in these tissues are not known. In order to test whether ALK7 is involved in adipocyte differentiation, we analyzed its expression during adipocyte differentiation. ALK7 expression was detected in the late phase of adipocyte differentiation by reverse transcriptase-polymerase chain reaction (RT-PCR), Western blotting and immunofluorescence staining in 3T3-L1 cells. We also detected the expression of ALK7 by RT-PCR in stromal vascular fraction (SVF) cells. These results indicated that ALK7 is a novel marker specifically expressed during the late phase of adipocyte differentiation. Furthermore, our results suggest the possible involvement of nodal or activin B in adipocyte differentiation

    Association of blood pressure and renal outcome in patients with chronic kidney disease; a post hoc analysis of FROM-J study

    Get PDF
    It is well-known that hypertension exacerbates chronic kidney disease (CKD) progression, however, the optimal target blood pressure (BP) level in patients with CKD remains unclear. This study aimed to assess the optimal BP level for preventing CKD progression. The risk of renal outcome among different BP categories at baseline as well as 1 year after, were evaluated using individual CKD patient data aged between 40 and 74 years from FROM-J [Frontier of Renal Outcome Modifications in Japan] study. The renal outcome was defined as >= 40% reduction in estimated glomerular filtration rate to130 mmHg group. A significant increase in the renal outcome was found only in the group of diastolic BP >= 90 mmHg. The group of BP= 130 mmHg at baseline. Targeting SBP level<130 mmHg would be associated with the preferable renal outcome.Clinical Trial Registration-URL: https://www.umin.ac.jp/ctr/. Unique identifier: UMIN000001159 (16/05/2008)

    Calcitonin Receptor Signaling Inhibits Muscle Stem Cells from Escaping the Quiescent State and the Niche

    Get PDF
    Masahiko Yamaguchi, Yoko Watanabe, Takuji Ohtani, Akiyoshi Uezumi, Norihisa Mikami, Miki Nakamura, Takahiko Sato, Masahito Ikawa, Mikio Hoshino, Kunihiro Tsuchida, Yuko Miyagoe-Suzuki, Kazutake Tsujikawa, Shin’ichi Takeda, Hiroshi Yamamoto, So-ichiro Fukada, Calcitonin Receptor Signaling Inhibits Muscle Stem Cells from Escaping the Quiescent State and the Niche, Cell Reports, Volume 13, Issue 2, 2015, Pages 302-314, ISSN 2211-1247, https://doi.org/10.1016/j.celrep.2015.08.083

    Cell-Surface Protein Profiling Identifies Distinctive Markers of Progenitor Cells in Human Skeletal Muscle

    Get PDF
    SummarySkeletal muscle contains two distinct stem/progenitor populations. One is the satellite cell, which acts as a muscle stem cell, and the other is the mesenchymal progenitor, which contributes to muscle pathogeneses such as fat infiltration and fibrosis. Detailed and accurate characterization of these progenitors in humans remains elusive. Here, we performed comprehensive cell-surface protein profiling of the two progenitor populations residing in human skeletal muscle and identified three previously unrecognized markers: CD82 and CD318 for satellite cells and CD201 for mesenchymal progenitors. These markers distinguish myogenic and mesenchymal progenitors, and enable efficient isolation of the two types of progenitors. Functional study revealed that CD82 ensures expansion and preservation of myogenic progenitors by suppressing excessive differentiation, and CD201 signaling favors adipogenesis of mesenchymal progenitors. Thus, cell-surface proteins identified here are not only useful markers but also functionally important molecules, and provide valuable insight into human muscle biology and diseases

    Characterization of follistatin-related gene as a negative regulatory factor for activin family members during mouse heart development

    Get PDF
    Follistatin-related gene (FLRG) encodes a secretory glycoprotein that has characteristic cysteine-rich follistatin domains. FLRG protein binds to and neutralizes several transforming growth factor-β (TGF-β) superfamily members, including myostatin (MSTN), which is a potent negative regulator of skeletal muscle mass. We have previously reported that FLRG was abundantly expressed in fetal and adult mouse heart. In this study, we analyzed the expression of FLRG mRNA during mouse heart development. FLRG mRNA was continuously expressed in the embryonic heart, whereas it was very low in skeletal muscles. By contrast, MSTN mRNA was highly expressed in embryonic skeletal muscles, whereas the expression of MSTN mRNA was rather low in the heart. In situ hybridization and immunohistochemical analysis revealed that FLRG expressed in smooth muscle of the aorta and pulmonary artery, valve leaflets of mitral and tricuspid valves, and cardiac muscles in the ventricle of mouse embryonic heart. However, MSTN was expressed in very limited areas, such as valve leaflets of pulmonary and aortic valves, the top of the ventricular and atrial septa. Interestingly, the expression of MSTN was complementary to that of FLRG, especially in the valvular apparatus. Biochemical analyses with surface plasmon resonance biosensor and reporter assays demonstrated that FLRG hardly dissociates from MSTN and activin once it bound to them, and efficiently inhibits these activities. Our results suggest that FLRG could function as a negative regulator of activin family members including MSTN during heart development

    Activin signaling as an emerging target for therapeutic interventions

    Get PDF
    After the initial discovery of activins as important regulators of reproduction, novel and diverse roles have been unraveled for them. Activins are expressed in various tissues and have a broad range of activities including the regulation of gonadal function, hormonal homeostasis, growth and differentiation of musculoskeletal tissues, regulation of growth and metastasis of cancer cells, proliferation and differentiation of embryonic stem cells, and even higher brain functions. Activins signal through a combination of type I and II transmembrane serine/threonine kinase receptors. Activin receptors are shared by multiple transforming growth factor-β (TGF-β) ligands such as myostatin, growth and differentiation factor-11 and nodal. Thus, although the activity of each ligand is distinct, they are also redundant, both physiologically and pathologically in vivo. Activin receptors activated by ligands phosphorylate the receptor-regulated Smads for TGF-β, Smad2 and 3. The Smad proteins then undergo multimerization with the co-mediator Smad4, and translocate into the nucleus to regulate the transcription of target genes in cooperation with nuclear cofactors. Signaling through receptors and Smads is controlled by multiple mechanisms including phosphorylation and other posttranslational modifications such as sumoylation, which affect potein localization, stability and transcriptional activity. Non-Smad signaling also plays an important role in activin signaling. Extracellularly, follistatin and related proteins bind to activins and related TGF-β ligands, and control the signaling and availability of ligands

    Prevention of hypoglycemia by intermittent-scanning continuous glucose monitoring device combined with structured education in patients with type 1 diabetes mellitus : A randomized, crossover trial

    Get PDF
    Aims: We conducted a randomized, crossover trial to compare intermittent-scanning continuous glucose monitoring (isCGM) device with structured education (Intervention) to self-monitoring of blood glucose (SMBG) (Control) in the reduction of time below range. Methods: This crossover trial involved 104 adults with type 1 diabetes mellitus (T1DM) using multiple daily injections. Participants were randomly allocated to either sequence Intervention/Control or sequence Control/Intervention. During the Intervention period which lasted 84 days, participants used the first-generation FreeStyle Libre (Abbott Diabetes Care, Alameda, CA, USA) and received structured education on how to prevent hypoglycemia based on the trend arrow and by frequent sensor scanning (≥10 times a day). Confirmatory SMBG was conducted before dosing insulin. The Control period lasted 84 days. The primary endpoint was the decrease in the time below range (TBR; <70 mg/dL). Results: The time below range was significantly reduced in the Intervention arm compared to the Control arm (2.42 ± 1.68 h/day [10.1 %±7.0 %] vs 3.10 ± 2.28 h/day [12.9 %±9.5 %], P = 0.012). The ratio of high-risk participants with low blood glucose index >5 was significantly reduced (8.6 % vs 23.7 %, P < 0.001). Conclusions: The use of isCGM combined with structured education significantly reduced the time below range in patients with T1DM

    On the origin and evolution of the asteroid Ryugu: A comprehensive geochemical perspective

    Get PDF
    Presented here are the observations and interpretations from a comprehensive analysis of 16 representative particles returned from the C-type asteroid Ryugu by the Hayabusa2 mission. On average Ryugu particles consist of 50% phyllosilicate matrix, 41% porosity and 9% minor phases, including organic matter. The abundances of 70 elements from the particles are in close agreement with those of CI chondrites. Bulk Ryugu particles show higher δ18O, Δ17O, and ε54Cr values than CI chondrites. As such, Ryugu sampled the most primitive and least-thermally processed protosolar nebula reservoirs. Such a finding is consistent with multi-scale H-C-N isotopic compositions that are compatible with an origin for Ryugu organic matter within both the protosolar nebula and the interstellar medium. The analytical data obtained here, suggests that complex soluble organic matter formed during aqueous alteration on the Ryugu progenitor planetesimal (several 10’s of km), <2.6 Myr after CAI formation. Subsequently, the Ryugu progenitor planetesimal was fragmented and evolved into the current asteroid Ryugu through sublimation

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
    corecore