1,027 research outputs found

    Numerical Study of Velocity Statistics in Steady Counterflow Quantum Turbulence

    Full text link
    We investigate the velocity statistics by calculating the Biot--Savart velocity induced by vortex filaments in steady counterflow turbulence investigated in a previous study [Phys. Rev. B {\bf 81}, 104511 (2010)]. The probability density function (PDF) obeys a Gaussian distribution in the low-velocity region and a power-law distribution v−3v^{-3} in the high-velocity region. This transition between the two distributions occur at the velocity characterized by the mean inter-vortex distance. Counterflow turbulence causes anisotropy of the vortex tangle, which leads to a difference in the PDF for the velocities perpendicular to and parallel to the counterflow.Comment: 4 pages, 7 figure

    Self-Organization of Vortex Length Distribution in Quantum Turbulence: An Approach from the Barabasi-Albert Model

    Full text link
    The energy spectrum of quantum turbulence obeys Kolmogorov's law. The vortex length distribution (VLD), meaning the size distribution of the vortices, in Kolmogorov quantum turbulence also obeys a power law. We propose here an innovative idea to study the origin of the power law of the VLD. The nature of quantized vortices allows one to describe the decay of quantum turbulence with a simple model that is similar to the Barabasi-Albert model of large networks. We show here that such a model can reproduce the power law of the VLD well.Comment: 4 pages including 5 figure

    Phase Separation of a Fast Rotating Boson-Fermion Mixture in the Lowest-Landau-Level Regime

    Full text link
    By minimizing the coupled mean-field energy functionals, we investigate the ground-state properties of a rotating atomic boson-fermion mixture in a two-dimensional parabolic trap. At high angular frequencies in the mean-field-lowest-Landau-level regime, quantized vortices enter the bosonic condensate, and a finite number of degenerate fermions form the maximum-density-droplet state. As the boson-fermion coupling constant increases, the maximum density droplet develops into a lower-density state associated with the phase separation, revealing characteristics of a Landau-level structure

    Ferromagnetic Resonance in Spinor Dipolar Bose--Einstein Condensates

    Full text link
    We used the Gross--Pitaevskii equations to investigate ferromagnetic resonance in spin-1 Bose--Einstein condensates with a magnetic dipole-dipole interaction. By introducing the dipole interaction, we obtained equations similar to the Kittel equations used to represent ferromagnetic resonance in condensed matter physics. These equations indicated that the ferromagnetic resonance originated from dipolar interaction, and that the resonance frequency depended upon the shape of the condensate. Furthermore, spin currents driven by spin diffusions are characteristic of this system.Comment: 8 pages, 10 figure

    Dynamics of vortex tangle without mutual friction in superfluid 4^4He

    Full text link
    A recent experiment has shown that a tangle of quantized vortices in superfluid 4^4He decayed even at mK temperatures where the normal fluid was negligible and no mutual friction worked. Motivated by this experiment, this work studies numerically the dynamics of the vortex tangle without the mutual friction, thus showing that a self-similar cascade process, whereby large vortex loops break up to smaller ones, proceeds in the vortex tangle and is closely related with its free decay. This cascade process which may be covered with the mutual friction at higher temperatures is just the one at zero temperature Feynman proposed long ago. The full Biot-Savart calculation is made for dilute vortices, while the localized induction approximation is used for a dense tangle. The former finds the elementary scenario: the reconnection of the vortices excites vortex waves along them and makes them kinked, which could be suppressed if the mutual friction worked. The kinked parts reconnect with the vortex they belong to, dividing into small loops. The latter simulation under the localized induction approximation shows that such cascade process actually proceeds self-similarly in a dense tangle and continues to make small vortices. Considering that the vortices of the interatomic size no longer keep the picture of vortex, the cascade process leads to the decay of the vortex line density. The presence of the cascade process is supported also by investigating the classification of the reconnection type and the size distribution of vortices. The decay of the vortex line density is consistent with the solution of the Vinen's equation which was originally derived on the basis of the idea of homogeneous turbulence with the cascade process. The obtained result is compared with the recent Vinen's theory.Comment: 16 pages, 16 figures, submitted to PR

    Spin textures in rotating two-component Bose-Einstein condensates

    Full text link
    We investigate two kinds of coreless vortices with axisymmetric and nonaxisymmetric configurations in rotating two-component Bose-Einstein condensates. Starting from the Gross-Pitaevskii energy functional in a rotating frame, we derive a nonlinear sigma model generalized to the two-component condensates. In terms of a pseudospin representation, an axisymmetric vortex and a nonaxisymmetric one correspond to spin textures referred to as a "skyrmion" and a "meron-pair", respectively. A variational method is used to investigate the dependence of the sizes of the stable spin textures on system parameters, and the optimized variational function is found to reproduce well the numerical solution. In the SU(2) symmetric case, the optimal skyrmion and meron-pair are degenerate and transform to each other by a rotation of the pseudospin. An external rf-field that couples coherently the hyperfine states of two components breaks the degeneracy in favor of the meron-pair texture due to an effective transverse pseudomagnetic field. The difference between the intracomponent and intercomponent interactions yields a longitudinal pseudomagnetic field and a ferromagnetic or an antiferromagnetic pseudospin interaction, leading to a meron-pair texture with an anisotropic distribution of vorticity.Comment: 14 pages, 15 figure

    Instability of vortex array and transitions to turbulent states in rotating helium II

    Full text link
    We consider superfluid helium inside a container which rotates at constant angular velocity and investigate numerically the stability of the array of quantized vortices in the presence of an imposed axial counterflow. This problem was studied experimentally by Swanson {\it et al.}, who reported evidence of instabilities at increasing axial flow but were not able to explain their nature. We find that Kelvin waves on individual vortices become unstable and grow in amplitude, until the amplitude of the waves becomes large enough that vortex reconnections take place and the vortex array is destabilized. The eventual nonlinear saturation of the instability consists of a turbulent tangle of quantized vortices which is strongly polarized. The computed results compare well with the experiments. Finally we suggest a theoretical explanation for the second instability which was observed at higher values of the axial flow

    Drag force on an oscillating object in quantum turbulence

    Full text link
    This paper reports results of the computation of the drag force exerted on an oscillating object in quantum turbulence in superfluid 4^4He. The drag force is calculated on the basis of numerical simulations of quantum turbulent flow about the object. The drag force is proportional to the square of the magnitude of the oscillation velocity, which is similar to that in classical turbulence at high Reynolds number. The drag coefficient is also calculated, and its value is found to be of the same order as that observed in previous experiments. The correspondence between quantum and classical turbulences is further clarified by examining the turbulence created by oscillating objects.Comment: 7 pages, 5 figures, 1 tabl
    • …
    corecore