4 research outputs found

    Antibiotic-dependent instability of homeostatic plasticity for growth and environmental load

    Full text link
    Reducing antibiotic usage in livestock animals has become an urgent issue worldwide to prevent antimicrobial resistance. Here, abuse of chlortetracycline (CTC), a versatile antibacterial agent, on the performance, blood components, fecal microbiota, and organic acid concentration in calves was investigated. Japanese Black calves were fed milk replacer containing CTC at 10 g/kg (CON) or 0 g/kg (EXP). Growth performance was not affected by CTC administration. However, CTC administration altered the correlation between fecal organic acids and bacterial genera. Machine learning methods such as association analysis, linear discriminant analysis, and energy landscape analysis revealed that CTC administration affected according to certain rules the population of various types of fecal bacteria. It is particularly interesting that the population of several methane-producing bacteria was high in the CON, and that of Lachnospiraceae, a butyrate-producing bacteria, was high in the EXP at 60 d of age. Furthermore, statistical causal inference based on machine learning data estimated that CTC treatment affects the entire intestinal environment, inhibiting butyrate production for growth and biological defense, which may be attributed to methanogens in feces. Thus, these observations highlight the multiple harmful impacts of antibiotics on intestinal health and the potential production of greenhouse gas in the calves

    Estimation of symbiotic bacterial structure in a sustainable seagrass ecosystem on recycled management

    Full text link
    Seagrass meadows play an essential role in blue carbon and aquatic ecosystem services. However, methods for the flourishing of seagrass are still being explored. Here, data from 49 public coastal surveys on the distribution of seagrass and seaweed around the onshore aquaculture facilities are revalidated, and an exceptional area where the seagrass Zostera marina thrives was found. The bacterial population there showed an apparent decrease in the pathogen candidates belonging to the order Flavobacteriales. Moreover, structure equation modeling and a linear non-Gaussian acyclic model based on the machine learning data estimated an optimal symbiotic bacterial group candidate for seagrass growth as follows: the Lachnospiraceae and Ruminococcaceae families as gut-inhabitant bacteria, Rhodobacteraceae as photosynthetic bacteria, and Desulfobulbaceae as cable bacteria modulating oxygen or nitrate reduction and oxidation of sulfide. These observations confer a novel perspective on the seagrass symbiotic bacterial structures critical for blue carbon and low-pathogenic marine ecosystems in aquaculture.Comment: 54 pages, 3 figures, 16 supporting informatio

    Agricultural quality matrix-based multiomics structural analysis of carrots in soils fertilized with thermophile-fermented compost

    Full text link
    Compost is used worldwide as a soil conditioner for crops, but its functions have still been explored. Here, the omics profiles of carrots were investigated, as a root vegetable plant model, in a field amended with compost fermented with thermophilic Bacillaceae for growth and quality indices. Exposure to compost significantly increased the productivity, antioxidant activity, red color, and taste of the carrot root and altered the soil bacterial composition with the levels of characteristic metabolites of the leaf, root, and soil. Based on the data, structural equation modeling (SEM) estimated that L-2-aminoadipate, phenylalanine, flavonoids and / or carotenoids in plants were optimally linked by exposure to compost. The SEM of the soil estimated that the genus Paenibacillus, L-2-aminoadipate and nicotinamide, and S-methyl L-cysteine were optimally involved during exposure. These estimates did not show a contradiction between the whole genomic analysis of compost-derived Paenibacillus isolates and the bioactivity data, inferring the presence of a complex cascade of plant growth-promoting effects and modulation of the nitrogen cycle by compost itself. These observations have provided information on the qualitative indicators of compost in complex soil-plant interactions and offer a new perspective for chemically independent sustainable agriculture through the efficient use of natural nitrogen.Comment: 6 figures, 1 Table, and support informatio
    corecore