16 research outputs found

    All-dielectric toroidal metasurfaces for angular-dependent resonant polarization beam splitting

    Get PDF
    An all-dielectric metasurface exhibiting a strong toroidal resonance is theoretically designed and experimentally demonstrated as an angular-dependent resonant polarization beam-splitter in the microwave K-band. The metasurface is fabricated by embedding a square periodic array of high-permittivity ceramic cuboid resonators in a 3D-printed substrate of polylactic acid. It is demonstrated that by properly selecting the resonator geometry and by tuning the angle of incidence through mechanical rotation, the metasurface can switch between a polarization beam splitting and bandpass or bandstop operation. Such performance is achieved by exploiting the highly asymmetric Fano spectral profile of the toroidal resonance and the very low (high) dispersion of the associated p-(s-) polarized mode resulting from the resonant toroidal dipole mode's field profile, as evidenced by both full-wave and band structure simulations. Theoretically infinite extinction ratios are achievable for polarization beam splitting operation with very low insertion losses and adjustable bandwidth. The experimental demonstration of such a compact, all-dielectric metasurface expands the research portfolio of resonant metasurfaces toward not only the investigation of the intriguing physics of toroidal modes but also to the engineering of functional millimeter-wave components for polarization control, for instance, in the context of 5G wireless communication networks.This research was co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH CREATE INNOVATE (Project code: No. T1EDK-02784) and by the Comunidad de Madrid and FEDER Program (S2018/NMT-4326), the Ministerio de Economía y Competitividad of Spain (TEC2016-77242-C3-1-R and TEC2016-76021-C2-2-R), and the FEDER/Ministerio de Ciencia, Innovación y Universidades and Agencia Estatal de Investigación (RTC2017-6321-1, PID2019-107270RB-C21 and PID2019-109072RB-C31)

    Calibration of Action Cameras for Photogrammetric Purposes

    No full text
    The use of action cameras for photogrammetry purposes is not widespread due to the fact that until recently the images provided by the sensors, using either still or video capture mode, were not big enough to perform and provide the appropriate analysis with the necessary photogrammetric accuracy. However, several manufacturers have recently produced and released new lightweight devices which are: (a) easy to handle, (b) capable of performing under extreme conditions and more importantly (c) able to provide both still images and video sequences of high resolution. In order to be able to use the sensor of action cameras we must apply a careful and reliable self-calibration prior to the use of any photogrammetric procedure, a relatively difficult scenario because of the short focal length of the camera and its wide angle lens that is used to obtain the maximum possible resolution of images. Special software, using functions of the OpenCV library, has been created to perform both the calibration and the production of undistorted scenes for each one of the still and video image capturing mode of a novel action camera, the GoPro Hero 3 camera that can provide still images up to 12 Mp and video up 8 Mp resolutio
    corecore