231 research outputs found

    Information-Theoretic Stochastic Optimal Control via Incremental Sampling-based Algorithms

    Get PDF
    This paper considers optimal control of dynamical systems which are represented by nonlinear stochastic differential equations. It is well-known that the optimal control policy for this problem can be obtained as a function of a value function that satisfies a nonlinear partial differential equation, namely, the Hamilton-Jacobi-Bellman equation. This nonlinear PDE must be solved backwards in time, and this computation is intractable for large scale systems. Under certain assumptions, and after applying a logarithmic transformation, an alternative characterization of the optimal policy can be given in terms of a path integral. Path Integral (PI) based control methods have recently been shown to provide elegant solutions to a broad class of stochastic optimal control problems. One of the implementation challenges with this formalism is the computation of the expectation of a cost functional over the trajectories of the unforced dynamics. Computing such expectation over trajectories that are sampled uniformly may induce numerical instabilities due to the exponentiation of the cost. Therefore, sampling of low-cost trajectories is essential for the practical implementation of PI-based methods. In this paper, we use incremental sampling-based algorithms to sample useful trajectories from the unforced system dynamics, and make a novel connection between Rapidly-exploring Random Trees (RRTs) and information-theoretic stochastic optimal control. We show the results from the numerical implementation of the proposed approach to several examples.Comment: 18 page

    Optimal Covariance Steering for Continuous-Time Linear Stochastic Systems With Additive Noise

    Full text link
    In this paper, we study the problem of how to optimally steer the state covariance of a general continuous-time linear stochastic system over a finite time interval subject to additive noise. Optimality here means reaching a target state covariance with minimal control energy. The additive noise may include a combination of white Gaussian noise and abrupt "jump noise" that is discontinuous in time. We first establish the controllability of the state covariance for linear time-varying stochastic systems. We then turn to the derivation of the optimal control, which entails solving two dynamically coupled matrix ordinary differential equations (ODEs) with split boundary conditions. We show the existence and uniqueness of the solution to these coupled matrix ODEs, and thus those of the optimal control.Comment: 8 pages, 2 figure

    Batch Belief Trees for Motion Planning Under Uncertainty

    Full text link
    In this work, we develop the Batch Belief Trees (BBT) algorithm for motion planning under motion and sensing uncertainties. The algorithm interleaves between batch sampling, building a graph of nominal trajectories in the state space, and searching over the graph to find belief space motion plans. By searching over the graph, BBT finds sophisticated plans that will visit (and revisit) information-rich regions to reduce uncertainty. One of the key benefits of this algorithm is the modified interplay between exploration and exploitation. Instead of an exhaustive search (exploitation) after one exploration step, the proposed algorithm uses batch samples to explore the state space and, in addition, does not require exhaustive search before the next iteration of batch sampling, which adds flexibility.The algorithm finds motion plans that converge to the optimal one as more samples are added to the graph. We test BBT in different planning environments. Our numerical investigation confirms that BBT finds non-trivial motion plans and is faster compared with previous similar methods
    • …
    corecore