3 research outputs found

    Optimization of cut surface quality during CNC Plasma Arc Cutting process

    Get PDF
    Optimization of cut surface quality during CNC plasma-arc cutting (PAC) of mild steel plates is presented. Using design of experiments (DOE) the optimum process parameters are estimated. The process parameters tested include cutting speed, cutting height and arc voltage. Analysis of means (ANOM) and analysis of variances (ANOVA) were used in order for the effect of each parameter on the surface quality to be assessed

    Optimizing ANN performance using DOE: application on turning of a titanium alloy

    No full text
    A methodology is presented to optimize the performance of an Artificial Neural Network (ANN) using Design of Experiments (DOE). 8 different feed forward back propagation (FFBP) ANNs were developed and tested according to the L8 full factorial orthogonal array. The 3 parameters tested were: Number of Hidden Neurons, Learning rate, and Momentum; each one having two levels. By utilizing the analysis of means (ANOM) and the analysis of variances (ANOVA), the optimum levels of ANN parameters were determined. The developed ANN was applied for predicting cutting forces and average surface roughness in turning Ti-6Al-4V alloy

    Energy and Exergy-Based Screening of Various Refrigerants, Hydrocarbons and Siloxanes for the Optimization of Biomass Boiler–Organic Rankine Cycle (BB–ORC) Heat and Power Cogeneration Plants

    No full text
    The cogeneration of power and heat was investigated for Biomass Boiler–Organic Rankine Cycle (BB–ORC) plants with the characteristics of typical units, such as the 1 MWel Turboden ORC 10 CHP. The thermodynamic analysis of the ORC unit was undertaken considering forty-two (42) dry and isentropic candidate pure working fluids. Only subcritical Rankine cycles were considered, and the pinch point temperature differences for the evaporation and condensation heat exchangers were kept constant at 10 °C in all cases. The study provides an original and unique screening of almost all pure working fluids that are considered appropriate in the literature under the same operation and optimization conditions and compiles them into a single reference. In its conclusions, the study provides useful fluid selection and design guidelines, which may be easily followed depending on the optimization objective of the ORC designer or operator. In general, hydrocarbons are found to lie in the optimum middle range of the fluid spectrum, between the siloxanes that maximize the production of mechanical power and the refrigerants that maximize the production of heat. Specific hydrocarbon fluids, such as cyclopentane, heptane, hexane, benzene, and toluene, are found as rational options for maximum mechanical efficiency when operating with practically feasible condensation pressures between 10 and 200 kPa. At condensation pressures below 10 kPa, ethylbenzene, o-xylene, m-xylene, p-xylene, and nonane are also found to be feasible options. Finally, cyclopentane, hexane, and MM (hexamethyldisiloxane) are selected as the most appropriate options for cogeneration plants aiming simultaneously at high mechanical power and maximum temperature water production
    corecore