404 research outputs found

    Missing bits of the solar jigsaw puzzle: small-scale, kinetic effects in coronal studies

    Full text link
    The solar corona, anomalously hot outer atmosphere of the Sun, is traditionally described by magnetohydrodynamic, fluid-like approach. Here we review some recent developments when, instead, a full kinetic description is used. It is shown that some of the main unsolved problems of solar physics, such as coronal heating and solar flare particle acceleration can be viewed in a new light when the small-scale, kinetic plasma description methods are used.Comment: 10 pages, 6 figure

    Particle-in-cell simulations of circularly polarised Alfvén wave phase mixing: A new mechanism for electron acceleration in collisionless plasmas

    Get PDF
    In this work we used Particle-In-Cell simulations to study the interaction of circularly polarised Alhén waves with one dimensional plasma density inhomogeneities transverse to the uniform magnetic field (phase mixing) in collisionless plasmas. In our preliminary work we reported discovery of a new electron acceleration mechanism, in which progressive distortion of the Alfvén wave front, due to the differences in local Alfvén speed, generates an oblique (nearly parallel to the magnetic field) electrostatic field. The latter accelerates electrons through the Landau resonance. Here we report a detailed study of this novel mechanism, including: (i) analysis of broadening of the ion distribution function due to the presence of Alfvén waves; and (ii) the generation of compressive perturbations due to both weak non-linearity and plasma density inhomogeneity. The amplitude decay law in the inhomogeneous regions, in the kinetic regime, is demonstrated to be the same as in the MHD approximation described by Heyvaerts & Priest (1983, A&A, 117, 220)

    Jeans instability of interstellar gas clouds in the background of weakly interacting massive particles

    Get PDF
    Criterion of the Jeans instability of interstellar gas clouds which are gravitationally coupled with weakly interacting massive particles is revisited. It is established that presence of the dark matter always reduces the Jeans length, and in turn, Jeans mass of the interstellar gas clouds. Astrophysical implications of this effect are discussed.Comment: version accepted in ApJ, Nov. 1, 1998 issue, vol. 50

    Phenomenological model of propagation of the elastic waves in a fluid-saturated porous solid with non-zero boundary slip velocity

    Full text link
    Zhu & Granick [Phys. Rev. Lett. 87, 096105 (2001)] have recently experimentally established existence of a boundary slip in a Newtonian liquid. They reported typical values of the slip length of the order of few micro-meters. In this light, the effect of introduction of the boundary slip into the theory of propagation of elastic waves in a fluid-saturated porous medium formulated by Biot is investigated. The new model should allow to fit the experimental seismic data in circumstances when Biot's theory fails, as the introduction of phenomenological dependence of the slip velocity upon frequency, which is based on robust physical arguments, adds an additional degree of freedom to the model. If fact, it predicts higher than the Biot's theory values of attenuation coefficients of the both rotational and dilatational waves in the intermediate frequency domain, which is in qualitative agreement with the experimental data. Therefore, the introduction of the boundary slip yields three-fold benefits: (A) Better agreement of theory with an experimental data since the parametric space of the model is larger (includes effects of boundary slip); (B) Possibility to identify types of porous medium and physical situations where boundary slip is important; (C) Constrain model parameters that are related to the boundary slip.Comment: numerical error corrected; J. Acoust. Soc. Am. (accepted

    A mechanism for parallel electric field generation in the MHD limit: possible implications for the coronal heating problem in the two stage mechanism

    Get PDF
    We solve numerically ideal, 2.5D, MHD equations in Cartesian coordinates, with a plasma beta of 0.0001 starting from the equilibrium that mimics a footpoint of a large curvature radius solar coronal loop or a polar region plume. On top of such an equilibrium, a purely Alfv\'enic, linearly polarised, plane wave is launched. In the context of the coronal heating problem a new two stage mechanism of plasma heating is presented by putting emphasis, first, on the generation of parallel electric fields within an ideal MHD description directly, rather than focusing on the enhanced dissipation mechanisms of the Alfv\'en waves and, second, dissipation of these parallel electric fields via {\it kinetic} effects. It is shown that a single Alfv\'en wave harmonic with frequency ν=7\nu = 7 Hz and longitudinal wavelength λA=0.63\lambda_A = 0.63 Mm, for a putative Alfv\'en speed of 4328 km s−1^{-1}, the generated parallel electric field could account for 10% of the necessary coronal heating requirement. We conjecture that wide spectrum (10−4−103^{-4}-10^3 Hz) Alfv\'en waves, based on the observationally constrained spectrum, could provide the necessary coronal heating requirement. The exact amount of energy that could be deposited by such waves through our mechanism of parallel electric field generation can only be calculated once a more complete parametric study is done. Thus, the "theoretical spectrum" of the energy stored in parallel electric fields versus frequency needs to be obtained.Comment: Astron. Astrophys. (accepted, in press) (2006) - FULL pape
    • …
    corecore