60 research outputs found
Genetic structuring in farmed and wild Gilthead seabream and European seabass in the Mediterranean Sea: implementations for detection of escapees
Microsatellite markers were used to investigate the genetic structure of the two most important cultured fish in the Mediterranean Sea, the gilthead seabream (Sparus aurata) and the European seabass (Dicentrarchus labrax), from two (one wild and one farmed) populations in Western Mediterranean (Spain) and from two (one wild and one farmed) populations Eastern Mediterranean (Greece). All populations were in Hardy-Weinberg disequilibrium. Interestingly, wild and farmed populations for both species from Greece were genetically differentiated and could be distinguished from each other. We used Bayesian methods for cluster analysis of farmed and wild populations. Our analysis has implications for the identification of escapees from fish farms to the wild.This study was financed by the European Union 7th Research Framework Project “Prevent Escape” (no. 226885; www.preventescape.eu)
Spawning kinetics and parentage contribution of European sea bass (Dicentrarchus labrax) broodstocks, and influence of GnRHa-induced spawning
Abstract Increasing parentage contribution in aquaculture broodstocks is important, in order to take full advantage of the available genetic makeup of the chosen fish, and to avoid inbreeding and loss of allele diversity over subsequent production generations. European sea bass (Dicentrarchus labrax) broodstocks were evaluated over two reproductive seasons to examine spawning kinetics, egg production, and parentage contribution during spontaneous/volitional spawning. In addition, we obtained preliminary results on the potential of a hormonal therapy to synchronize spawning and increase parentage contribution. Spawning lasted between 25 and 66 days in January-March and consisted of 12–21 daily spawns per broodstock, with individual females spawning 1–5 times and males participating in 1–8 spawns during each reproductive season. Daily fecundity was variable during the season, without any trend, and so were all the examined egg/larval quality parameters. Parentage assignment of the produced families indicated that the majority of progeny from a whole season may belong to a very small number of breeders, with four females producing up to 80 % of the analyzed eggs, while a single male may sire up to 57 % of the fertilized eggs. No significant improvement in the overall parentage contribution was obtained with the hormonal treatment, using gonadotropin releasing hormone agonist (GnRHa). Nevertheless, the daily fecundity was higher, and parentage of the eggs from the first spawn after GnRHa treatment was more equally distributed to multiple males/females, compared to any volitional spawns. The study demonstrates the need to further improve parentage contribution in European sea bass aquaculture, through synchronization of maturation and spawning. Although the GnRHa induction experiment was not replicated in the present preliminary study, the results suggest that hormonally-induced synchronization of maturation may have the potential of producing a larger number of progenies from more families, from where to select the next generation of breeders for a breeding program
Transcriptome analysis of flathead grey mullet (Mugil cephalus) ovarian development induced by recombinant gonadotropin hormones
Background: Treatment with recombinant gonadotropin hormones (rGths), follicle-stimulating hormone (rFsh) and luteinizing hormone (rLh), was shown to induce and complete vitellogenesis to finally obtain viable eggs and larvae in the flathead grey mullet (Mugil cephalus), a teleost arrested at early stages of gametogenesis in intensive captivity conditions. This study aimed to investigate the transcriptomic changes that occur in the ovary of females during the rGths-induced vitellogenesis.
Methods: Ovarian samples were collected through biopsies from the same five females at four stages of ovarian development. RNASeq libraries were constructed for all stages studied, sequenced on an Illumina HiSeq4000, and a de novo transcriptome was constructed. Differentially expressed genes (DEGs) were identified between stages and the functional properties of DEGs were characterized by comparison with the gene ontology and Kyoto Encyclopedia. An enrichment analysis of molecular pathways was performed.
Results: The de novo transcriptome comprised 287,089 transcripts after filtering. As vitellogenesis progressed, more genes were significantly upregulated than downregulated. The rFsh application induced ovarian development from previtellogenesis to early-to-mid-vitellogenesis with associated pathways enriched from upregulated DEGs related to ovarian steroidogenesis and reproductive development, cholesterol metabolism, ovarian growth and differentiation, lipid accumulation, and cell-to-cell adhesion pathways. The application of rFsh and rLh at early-to-mid-vitellogenesis induced the growth of oocytes to late-vitellogenesis and, with it, the enrichment of pathways from upregulated DEGs related to the production of energy, such as the lysosomes activity. The application of rLh at late-vitellogenesis induced the completion of vitellogenesis with the enrichment of pathways linked with the switch from vitellogenesis to oocyte maturation.
Conclusion: The DEGs and enriched molecular pathways described during the induced vitellogenesis of flathead grey mullet with rGths were typical of natural oogenesis reported for other fish species. Present results add new knowledge to the rGths action to further raise the possibility of using rGths in species that present similar reproductive disorders in aquaculture, the aquarium industry as well as the conservation of endangered species.info:eu-repo/semantics/publishedVersio
The sex-specific transcriptome of the hermaphrodite sparid sharpsnout seabream (Diplodus puntazzo)
Background: Teleosts are characterized by a remarkable breadth of sexual mechanisms including various forms of hermaphroditism. Sparidae is a fish family exhibiting gonochorism or hermaphroditism even in closely related species. The sparid Diplodus puntazzo (sharpsnout seabream), exhibits rudimentary hermaphroditism characterized by intersexual immature gonads but single-sex mature ones. Apart from the intriguing reproductive biology, it is economically important with a continuously growing aquaculture in the Mediterranean Sea, but limited available genetic resources. Our aim was to characterize the expressed transcriptome of gonads and brains through RNA-Sequencing and explore the properties of genes that exhibit sex-biased expression profiles. Results: Through RNA-Sequencing we obtained an assembled transcriptome of 82,331 loci. The expression analysis uncovered remarkable differences between male and female gonads, while male and female brains were almost identical. Focused search for known targets of sex determination and differentiation in vertebrates built the sex-specific expression profile of sharpsnout seabream. Finally, a thorough genetic marker discovery pipeline led to the retrieval of 85,189 SNPs and 29,076 microsatellites enriching the available genetic markers for this species. Conclusions: We obtained a nearly complete source of transcriptomic sequence as well as marker information for sharpsnout seabream, laying the ground for understanding the complex process of sex differentiation of this economically valuable species. The genes involved include known candidates from other vertebrate species, suggesting a conservation of the toolkit between gonochorists and hermaphrodites
Genetic structuring in farmed and wild Gilthead seabream and European seabass in the Mediterranean Sea: implementations for detection of escapees
Microsatellite markers were used to investigate the genetic structure of the two most important cultured fish in the Mediterranean Sea, the gilthead seabream (Sparus aurata) and the European seabass (Dicentrarchus labrax), from two (one wild and one farmed) populations in Western Mediterranean (Spain) and from two (one wild and one farmed) populations Eastern Mediterranean (Greece). All populations were in Hardy-Weinberg disequilibrium. Interestingly, wild and farmed populations for both species from Greece were genetically differentiated and could be distinguished from each other. We used Bayesian methods for cluster analysis of farmed and wild populations. Our analysis has implications for the identification of escapees from fish farms to the wild
Genetic Basis for Resistance Against Viral Nervous Necrosis: GWAS and Potential of Genomic Prediction Explored in Farmed European Sea Bass (Dicentrarchus labrax)
Viral nervous necrosis (VNN) is an infectious disease caused by the red-spotted grouper nervous necrosis virus (RGNNV) in European sea bass and is considered a serious concern for the aquaculture industry with fry and juveniles being highly susceptible. To understand the genetic basis for resistance against VNN, a survival phenotype through the challenge test against the RGNNV was recorded in populations from multiple year classes (YC2016 and YC2017). A total of 4,851 individuals from 181 families were tested, and a subset (n∼1,535) belonging to 122 families was genotyped using a ∼57K Affymetrix Axiom array. The survival against the RGNNV showed low to moderate heritability with observed scale estimates of 0.18 and 0.25 obtained using pedigree vs. genomic information, respectively. The genome-wide association analysis showed a strong signal of quantitative trait loci (QTL) at LG12 which explained ∼33% of the genetic variance. The QTL region contained multiple genes (ITPK1, PLK4, HSPA4L, REEP1, CHMP2, MRPL35, and SCUBE) with HSPA4L and/or REEP1 genes being highly relevant with a likely effect on host response in managing disease-associated symptoms. The results on the accuracy of predicting breeding values presented 20–43% advantage in accuracy using genomic over pedigree-based information which varied across model types and applied validation schemes.publishedVersio
Community Parameters and Genome-Wide RAD-Seq Loci of Ceratothoa oestroides Imply Its Transfer between Farmed European Sea Bass and Wild Farm-Aggregating Fish
Wild fish assemblages that aggregate within commercial marine aquaculture sites for feeding and shelter have been considered as a primary source of pathogenic parasites vectored to farmed fish maintained in net pens at an elevated density. In order to evaluate whether Ceratothoa oestroides (Isopoda, Cymothoidae), a generalist and pestilent isopod that is frequently found in Adriatic and Greek stocks of farmed European sea bass (Dicentrarchus labrax), transfers between wild and farmed fish, a RAD-Seq (restriction-site-associated DNA sequencing)-mediated genetic screening approach was employed. The double-digest RAD-Seq of 310 C. oestroides specimens collected from farmed European sea bass (138) and different wild farm-aggregating fish (172) identified 313 robust SNPs that evidenced a close genetic relatedness between the “wild” and “farmed” genotypes. ddRAD-Seq proved to be an effective method for detecting the discrete genetic structuring of C. oestroides and genotype intermixing between two populations. The parasite prevalence in the farmed sea bass was 1.02%, with a mean intensity of 2.0 and mean abundance of 0.02, while in the wild fish, the prevalence was 8.1%; the mean intensity, 1.81; and the mean abundance, 0.15. Such differences are likely a consequence of human interventions during the farmed fish’s rearing cycle that, nevertheless, did not affect the transfer of C. oestroides
The Gene Toolkit Implicated in Functional Sex in Sparidae Hermaphrodites: Inferences From Comparative Transcriptomics
Sex-biased gene expression is the mode through which sex dimorphism arises from a nearly identical genome, especially in organisms without genetic sex determination. Teleost fishes show great variations in the way the sex phenotype forms. Among them, Sparidae, that might be considered as a model family displays a remarkable diversity of reproductive modes. In this study, we sequenced and analyzed the sex-biased transcriptome in gonads and brain (the tissues with the most profound role in sexual development and reproduction) of two sparids with different reproductive modes: the gonochoristic common dentex, Dentex dentex, and the protandrous hermaphrodite gilthead seabream, Sparus aurata. Through comparative analysis with other protogynous and rudimentary protandrous sparid transcriptomes already available, we put forward common male and female-specific genes and pathways that are probably implicated in sex-maintenance in this fish family. Our results contribute to the understanding of the complex processes behind the establishment of the functional sex, especially in hermaphrodite species and set the groundwork for future experiments by providing a gene toolkit that can improve efforts to control phenotypic sex in finfish in the ever-increasingly important field of aquaculture
Population structure and genetic variability in wild and farmed Mediterranean populations of gilthead seabream and European seabass inferred from a 60K combined species SNP array
13 Pág.Knowledge of population structure and genetic diversity within and between wild and farmed populations of gilthead sea bream (Sparus aurata) and European seabass (Dicentrarchus labrax) is important to achieve sustainable aquaculture production of these species and to assess the risk of genetic impacts of fish escaped from farms. Previous population genetic studies on these species have been based on a limited number of genetic markers and samples. In this study, these features were assessed using samples from 24 seabream and 25 seabass populations distributed throughout the Mediterranean Sea, and 3 wild seabream Atlantic populations. Samples were genotyped with a newly developed combined species SNP array that includes ~60K SNPs. Data from sequencing pools of individual DNA from the same populations were also used. Different approaches were employed for identifying the extent of population stratification within species. The effective population size (a parameter inversely related to the rate at which genetic variability is lost) was estimated for each population based on linkage disequilibrium. Population structure results revealed a clear differentiation between wild and farmed populations in both species. Wild populations showed a low degree of differentiation, particularly in seabream. Despite this, a slight differentiation was observed between Atlantic and Mediterranean seabream populations and between western and eastern Mediterranean seabass populations. However, farmed populations were quite heterogeneous and showed a high degree of differentiation. Some farmed populations of both species showed a genetic makeup similar to that found in wild populations. In general, the effective population size was large (> 1000) for wild and small (< 100) for farmed populations of both species. About 40% of the seabream and 80% of the seabass farmed populations had estimates of effective population size smaller than 50 highlighting the need of applying measures to control the rate at which genetic variability is lost.This work was supported by the European Commission Horizon 2020 (H2020) Framework Programme through grant agreement no 727315 MedAID project (Mediterranean Aquaculture Integrated Development) and by MCIN/ AEI /10.13039/501100011033 (Project PID2020-114426GB-C2).Peer reviewe
- …