3 research outputs found

    Dehydroaromatization of methane over noble metal loaded Mo/H-ZSM-5 zeolite catalysts

    No full text
    Abstract Dehydroaromatization of methane (MDA) reaction was investigated over platinum modified Mo/H-ZSM-5 catalysts which were pre-carbided at 750 °C. The influence of platinum on the catalytic performance and product selectivity of Mo/H-ZSM-5 catalysts for the MDA reaction at 700 °C were studied. The presence of platinum led to a slight decrease in methane conversion from 7.5 to 4.2%. Aromatic selectivities above 90% were obtained with catalysts containing low platinum loadings (0.5 and 1.0 wt.%), with benzene being the most prominent product. A decrease in coke selectivity and coke deposits was noted with the platinum modified Mo/H-ZSM-5 zeolite catalysts. A comparative study was performed to compare platinum, palladium and ruthenium promoted Mo/H-ZSM-5 zeolite catalysts with un-promoted Mo/H-ZSM-5. The ruthenium promoted catalyst proved to be superior in catalytic performance, with a higher methane conversion obtained than that found for platinum promoted and palladium promoted Mo/H-ZSM-5 catalysts. Benzene selectivity of about 60% was obtained for ruthenium and palladium promoted Mo/H- ZSM-5 catalysts and the total aromatic selectivity was maintained at 90%. TGA results showed a total reduction of 50% by weight of carbon deposited on the promoted Mo/H-ZSM-5 catalyst. Graphic abstrac

    Photocatalytic Degradation of Methylene Blue and Ortho-Toluidine Blue: Activity of Lanthanum Composites LaxMOy (M: Fe, Co, Ni)

    No full text
    Lanthanum (La) nanocomposites LaFeO3, LaNiO3, and LaCoO3 were synthesized using a sol-gel method, and different La to-metal (Fe, Ni, or Co) ratios were attained using various concentrations of salts. The resulting composites were calcined at 540 °C and characterized by XRD, SEM-EDX, FT-IR spectroscopy, XPS, thermogravimetric analysis (TGA), and PL spectroscopy. The activity of the lanthanum composites (LaFeO3, LaNiO3, and LaCoO3) was studied using the photocatalytic degradation of methylene blue (MB) and ortho-toluidine blue (o-TB) under visible light with a wavelength below 420 nm. The change in the concentration of dyes was monitored by using the UV-Vis spectroscopy technique. All composites appeared to have some degree of photocatalytic activity, with composites possessing an orthorhombic crystal structure having higher photocatalytic activity. The LaCoO3 composite is more efficient compared with LaFeO3 and LaNiO3 for both dyes. High degradation percentages were observed for the La composites with a 1:1 metal ratio

    Photocatalytic Degradation of Methylene Blue and Ortho-Toluidine Blue: Activity of Lanthanum Composites La<sub>x</sub>MO<sub>y</sub> (M: Fe, Co, Ni)

    No full text
    Lanthanum (La) nanocomposites LaFeO3, LaNiO3, and LaCoO3 were synthesized using a sol-gel method, and different La to-metal (Fe, Ni, or Co) ratios were attained using various concentrations of salts. The resulting composites were calcined at 540 °C and characterized by XRD, SEM-EDX, FT-IR spectroscopy, XPS, thermogravimetric analysis (TGA), and PL spectroscopy. The activity of the lanthanum composites (LaFeO3, LaNiO3, and LaCoO3) was studied using the photocatalytic degradation of methylene blue (MB) and ortho-toluidine blue (o-TB) under visible light with a wavelength below 420 nm. The change in the concentration of dyes was monitored by using the UV-Vis spectroscopy technique. All composites appeared to have some degree of photocatalytic activity, with composites possessing an orthorhombic crystal structure having higher photocatalytic activity. The LaCoO3 composite is more efficient compared with LaFeO3 and LaNiO3 for both dyes. High degradation percentages were observed for the La composites with a 1:1 metal ratio
    corecore