60 research outputs found
Synthesis, photocatalysis, and gas-sensing property of monodisperse In2O3 hollow spheres by template implantation.
本研究使用商用高分子微球做為模版,前趨物 InCl3 於75oC之C2Cl4 溶劑解離成 In3+ 離子,與高分子模版表面形成螯合 (chelate) 反應並植入模版表層,從 XPS能譜分析,In3+ 離子與高分子模版之羧酸根形成 In-O 鍵結,隨著反應時間的增加,In3+ 除了形成In-O之外,同時也形成了In-OH鍵結;將微球模版於200-600oC 空氣氣氛進行熱處理,發現於熱處理溫達 500oC之後已形成 bcc 結構之 In2O3中空微球。本研究合成之中空微球除了具備單一粒徑尺寸的優點,另外,相較於已知文獻,吾人合成之單一成份 In2O3 中空微球,具備相對較高之比表面積 (B.E.T. = 260 m2 g-1)。透過改變製程參數 (如:前驅物濃度、反應時間與反應溫度),發現可以控制中空微球之粒徑尺寸與殼層結構,例如隨著InCl3濃度的增加,中空微球尺寸由InCl3 添加0.01g 時之 500nm 增加至添加0.1g時之 1μm,中空微球的比表面積則由 260 減少至15.1 m2g-1,殼層結構之孔洞體積 (B.J.H. cumulative pore volume) 則由 0.44 減少至 0.05 cm3g-1,顯示殼層結構隨著前驅物濃度的增加而緻密化。利用亞甲基藍 (methylene blue) 水溶液,並以 UV 光源照射,觀察 In2O3 中空微球殼層結構對於MB 染料之光觸媒性質影響,在 UV 光照射 30 分鐘後,發現比表面積54.7 m2g-1之中空微球可使MB 水溶液濃度降解 52%,經過 UV 光照射120分鐘,MB 水溶液濃度降解了 72%,相較於單純之 MB 水溶液,濃度減少約 44%。另外,也發現改變比表面積可以影響 CO 氣體感測性質,吾人發現隨著中空微球之比表面積增加 (15.1 增加至 260 m2g-1),中空微球對於 CO 氣體之敏感性 (sensitivity, S) 由 15% 增加至 42%。Indium oxide (In2O3) microspheres with hollow interiors have been prepared by a facile implantation route which enables indium ions released from indium-chloride precursors to chelate with and implant into nonporous polymeric templates in C2Cl4 solvent at 75 oC. The templates are then removed upon calcination at 500oC in air atmosphere, forming monodisperse hollow In2O3 particles of bcc structure which have a high surface area (260m2g-1). The particle size and shell structure of hollow sphere can be altered by synthesis parameter (e.g., InCl3 concentration, reaction time and reaction temperature). For example, average particle size of the hollow particles is increased from 500 nm (InCl3 0.01g) to 1μm (InCl3 0.1g), as well as the specific surface area from 15.1 to 260m2g-1, and pore volume from 0.44 to 0.05cm3g-1. For the hollow In2O3 particles with a high surface area (54.7 m2 g-1), an enhanced photocatalytic efficiency (up to ~ one-fold increase) against methylene blue (MB) dye is obtained under UV exposure for the aqueous In2O3 colloids with a dilute solids concentration of 0.02 wt.%. The surface area of hollow In2O3 particles is also an important index for CO gas sensing property. Gas sensitivity is raised from 15 to 42% with increasing surface area (15.1 to 260 m2g-1).第一章 緒論………………………………………………………………. 1
1-1 前言………………………………………………………………. 1
1-2 研究動機…………………………………………………………. 1
第二章 文獻回顧…………………………………………………………. 3
2-1 乾式合成技術製備 In2O3……………………………………….. 3
2-1-1 以真空鍍膜技術製備 In2O3 半導體材料………………...……. 3
2-1-2 以VLS (Vapor-Liquid-Solid) 法製備In2O3 半導體材料……… 6
2-2 以濕式化學合成法製備 In2O3 半導體材料………………...…. 9
2-2-1 水熱法合成 In2O3 膠體粒子………...…………………………. 9
2-2-2 溶膠凝膠 (sol-gel) 法合成 In2O3 膠體粒子………………....... 12
2-2-3 非水系系統合成 In2O3 膠體粒子………….…………………... 14
2-3 硬質模版法合成 In2O3 中空微球…...…………………………. 17
2-4 In2O3 中空微球氣體感測性質………………….………………. 19
2-5 In2O3 中空微球光觸媒性質…………………….......................... 20
第三章 實驗流程與分析儀器介紹………………………………………. 23
3-1 實驗藥品及製程設備……………………………………………. 23
3-1-1 實驗藥品…………………………………………………………. 23
3-1-2 製程儀器…………………………………………………………. 23
3-2 合成 In2O3 中空微球實驗流程………………………………… 23
3-3 分析儀器與樣品製備……………………………….…………… 25
3-4 氣體感測性質量測 (Gas-Sensing)………………….…………... 28
3-5 亞甲基藍光觸媒性質量測 (Photocatalyst)…………………….. 28
第四章 結果與討論………………………………………………………. 29
4-1 植入反應…………………………………………………………. 29
4-1-1 微球模版物理性質與化學組成...……………………………….. 29
4-1-2 植入反應後之微球模版的 XPS 縱深分析……………...…….. 31
4-1-3 參與植入反應之前驅物離子層析分析………………...……….. 32
4-2 植入反應熱處理溫度與前驅物濃度參數最佳化………..……... 33
4-3 In3+ 離子與微球模版於植入反應之合成機制………...………. 35
4-4 改變合成參數對於In2O3 微球結構之影響…….……………… 39
4-4-1 改變前驅物濃度對於 In2O3 微球結構之影響……..………….. 39
4-4-2 改變反應時間對於 In2O3 微球結構之影響……...……………. 43
4-5 植入反應合成 In2O3 中空微球之反應動力學………………… 46
4-6 In2O3 中空微球之光觸媒性質量測……………...……………... 51
4-7 In2O3 中空微球之 CO 氣體感測性質…………………………. 52
第五章 結論………………………………………………………………. 54
參考文獻 ……………………………………………………………………. 5
Synthesis of CuO Microspheres by Colloidal Templating and the Temperature Effect on the Synthesized Microsphere Size
本研究利用均一粒徑尺寸的有機膠體微球作為犧牲模板(Sacrificial Template),結合化學水熱合成法製作無機材質氧化銅膠體粒子。吾人藉由反應溫度與鍛燒溫度的控制,調查溫度效應對合成之膠體粒子粒徑之影響。研究發現由於塑膠微球核與所合成的氧化銅粒子彼此表面間帶相反電性之電荷,使得銅錯合物吸附於塑膠微球核表面上,形成核殼結構。在反應溫度75oC所合成之微球,經過XRD驗證已是氧化銅結晶為主的結構,且其結晶性隨鍛燒溫度提升至400oC,有機核隨溫度升高裂解而愈趨於明顯,部分合成之氧化銅膠體粒子應是中空結構。相當有趣的是,吾人發現在塑膠微球表面所披覆的氧化銅膠體粒子,似乎會催化有機核質的氧化,由熱分析結果顯示,塑膠核在350oC的臨界溫度呈現非常明顯的失重(ΔW/W0~70%),此與單獨微球的熱分析有顯著的差別。此外,合成膠體粒子的粒徑隨反應溫度(75-95 oC)以及鍛燒溫度(400-600oC)的上升而由約0.8μm增加1.4μm。This research synthesized inorganic,hollow copper oxide (CuO) colloidal particles by hydrothermal method in combination with colloidal templating using organic latex spheres as a sacrificial core. The uniform-sized organic latex particles were coated with layers of copper compounds hydrothermally, and the reaction temperature and calcination temperature on the synthesized particle size were examined. The copper compounds with cationic surface charge were found to adsorb preferentially on the organic latex surface of anionic feature in liquid. CuO colloidal particles were formed by pyrolysis decomposition of latex spheres at elevated temperatures. The CuO was of monoclinic crystalline structure at reaction temperature of 75oC, and the crystallinity became more apparent when the calcination temperature was raised to 400 oC. In TGA analysis, the copper compounds and the organic latex showed a weight loss (ΔW/W0) of 70% at 350 oC, revealing that the copper compounds acted as a catalyzer which facilitates the decomposition of polymeric latex in air atmosphere. The particle size of CuO colloidal particle was found to increase from 0.8μm to 1.4μm as the reaction temperature and the calcination temperature were increased.目 錄
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
第二章 文獻回顧 3
2-1 水熱法合成核殼結構 3
2-2 層接層法合成核殼結構 5
2-3 溶凝膠法合成核殼結構 7
2-4 微乳化法合成核殼結構 8
2-5 氧化銅粉體的合成 10
第三章 實驗步驟 12
3-1 實驗藥品 12
3-2 實驗流程 13
3-3 傅立葉轉換紅外線光譜儀量測實驗…………………………14
3-4 X-Ray 繞射實驗............................................................................14
3-5 場發射掃描式電子顯微鏡微結構分析………………………14
3-6 動態光散射粒徑分析…………………………………………15
3-7 熱重與熱差分析實驗…………………………………………15
第四章 實驗結果與討論 16
4-1 水熱法合成氧化銅膠體粒子…………………………………16
4-1-1 氧化銅膠體粒子形成機制……………………………………16
4-1-2 熱重分析………………………………………………………18
4-1-3 EDS成分與X-Ray繞射實驗分析...........................................20
4-1-4 傅立葉紅外線光譜儀分析........................................................22
4-1-5 氧化銅膠體粒子之顯微外觀…………………………………24
4-2 溫度效應對合成氧化銅膠體粒子與粒徑大小的影響.............29
4-2-1 溫度效應對合成氧化銅膠體粒子的影響……………………29
4-2-1-1 熱重分析....................................................................................29
4-2-1-2 X-Ray繞射分析.............................................................................31
4-2-1-3 FTIR分析........................................................................................32
4-2-2 溫度效應對膠體粒子粒徑的影響...............................................34
4-3 BET比表面積量測........................................................................44
第五章 結論...................................................................................................45
參考文獻 ...........................................................................................................47
圖 目 錄
Fig. 4.1 分散劑PVP(固含量1.5%)與(a)塑膠微球(b)在反應溫度75oC時
所合成的氧化銅粉體之Zeta電位關係圖。.....................................18
Fig. 4.2 反應溫度75oC下合成之銅錯合物熱重分析。(a) 氧化銅,
(b) 氧化銅/PVP, (c)塑膠微球/PVP/氧化銅, (d)單純塑膠微
球在大氣環境中的熱重行為,(e)塑膠微球/氧化銅,(f)塑膠微
球/PVP的熱重行為為。……….....................................................20
Fig. 4.3 在反應溫度75oC時合成的銅化合物經過大氣環境中400oC鍛燒
處理後所得到之氧化銅EDS成分分析。………………………..21
Fig. 4.4 氧化銅粉末之X-Ray繞射圖譜。(a)JCPDS No.41-0254, (b)商用,
(c)反應溫度75oC時合成未鍛燒,(d)鍛燒溫度400oC處理後。
…………………………………………………………………….22
Fig. 4.5 氧化銅之傅立葉紅外線光譜圖(a)塑膠微球,(b)反應溫度75oC
合成的單純氧化銅,(c)存在塑膠微球的氧化銅,(d)經過350oC
熱處理之(c)合成物,(e)400℃熱處理後之(c)合成物,(f)商用氧化
銅。.................................................................................................24
Fig. 4.6 塑膠微球核在(a)鍛燒前,(b)經過350oC鍛燒後之FESEM照片。
…………………………………………………………………….26
Fig. 4.7 在反應溫度75oC下(a)未鍛燒,(b)經過350oC鍛燒後含有塑膠微球
核之反應物FESEM照片。……………………………………....27
Fig. 4.8 (a)無添加塑膠微球核(b)有添加塑膠微球核,在反應溫度75oC鍛
燒溫度400oC處理後形成的氧化銅膠體粒子FESEM照片.........28
Fig. 4.9 在不同反應溫度所合成的氧化銅粉體之熱重分析圖(大氣環
境)。………………………………………………………………30
Fig. 4.10 在不同反應溫度所合成的氧化銅粉體之DTA熱分析圖(大氣環境)。……………………………………………………..............31
Fig. 4.11 在反應溫度(a) 75oC,(b) 85oC,(c) 95oC合成之氧化銅與塑膠微球
之X-Ray繞射圖。………………………………………………32
Fig. 4.12 分別於反應溫度75-95 oC時所合成的氧化銅與塑膠微球FTIR圖譜。……………………………………………………................32
Fig. 4.13 在反應溫度(a) 75oC,(b) 85oC,(c) 95oC合成之氧化銅與塑膠微球,經過400oC鍛燒後之X-Ray繞射圖。…………………...........33
Fig. 4.14 在反應溫度(a) 75oC,(b) 85oC,(c) 95oC合成之氧化銅與塑膠微球,
經過400oC鍛燒後所得之氧化銅中空微球FESEM照片。…..37
Fig. 4.15 反應溫度與氧化銅中空微球粒徑之關係圖。………………....38
Fig. 4.16 反應溫度75oC下所合成的氧化銅經過(a)400oC(b)500oC(c)600oC鍛燒後形成的氧化銅中空微球X-Ray繞射圖。…..………….39
Fig. 4.17 反應溫度75oC下所合成的氧化銅經過(a)400oC(b)500oC(c)600oC鍛燒後形成的氧化銅中空微球之FESEM照片。……………42
Fig. 4.18 反應溫度75oC下所合成的氧化銅經過400-600 oC後,動態光散射粒徑分佈圖。………………………………………………..42
Fig. 4-19 氧化銅膠體粒子在鍛燒溫度400-600 oC熱處理後,鍛燒溫度與
BET比表面積之關係圖。……………………………………....4
Synthesis, microstructure,andphotocatalysisofIn2O3 hollowparticles
Indium oxide (In2O3) microspheres with hollow interiors have been prepared by a facile implantation route which enables indium ions released from indium-chloride precursors to implant into nonporous polymeric templates in C2Cl4 solvent. The templates are then removed upon calcination at 500 °C in air atmosphere, forming hollow In2O3 particles. Specific surface area (0.5-260 m2 g−1) and differential pore volume (7 × 10−9 to 3.8 × 10−4 m3 g−1 Å−1) of the hollow particles can be tailored by adjusting the precursor concentration. For the hollow In2O3 particles with high surface area (260 m2 g−1), an enhanced photocatalytic efficiency (up to ∼one-fold increase) against methylene blue (MB) dye is obtained under UV exposure for the aqueous In2O3 colloids with a dilute solids concentration of 0.02 wt.%
Facile Synthesis of Monodispersed In2O3 Hollow Spheres and Application in Photocatalysis and Gas Sensing
Monodispersed, agglomerate-free In2O3 hollow spheres have been prepared via a simple synthetic route involving permeation and anchoring of In3+ ions with carbonyl groups of swollen commercial polymer beads in tetrachloroethylene solvent followed by thermal removal of the template cores in ambient air. The as-synthesized hollow spheres exhibit a narrow size distribution with tunable particle size (0.5–1.2 μm) and shell thickness (62–230 nm) over the process variables examined, i.e., InCl3 precursor concentration (4.5 × 10−3–6.7 × 10−2 M), reaction temperature (55°C–95°C), and reaction time (1–6 h). Kinetics calculation reveals that the formation of permeating In3+-rich shell in the swollen template beads becomes energetically less favorable to proceed as the reaction time increases. This limits the maximum shell thickness attainable at the given process variables. The shell is nanoporous with a Horvath-Kawazoe (HK) pore size of ~3 nm, which remains essentially unchanged as the process variables alter. The In2O3 hollow spheres with an increased Brunauer-Emmett-Teller (BET) surface area (up to 329 m2/g) show an improved capability in photodegradation of aqueous methylene blue (MB) dye under UV exposure as well as an increased sensitivity for CO-gas detection. This metal-implantation scheme is general and can be extended to the synthesis of other hollow materials in various solvent liquids
Preparation of ITO/Ag nanohybrid particles by a reverse micellar layer-by-layer coating
Silver (Ag) nanoparticles were adsorbed preferentially on indium tin oxide (ITO) surface to form composite particles using a reverse micellar layer-by-layer deposition. The micellar process stabilized the Ag particles by an anionic sodium bis(2-ethylhexyl) sulfosuccinate (AOT) surfactant in isooctane solvent. The ITO particles surface was mediated by a cationic poly(allylamine hydrochloride) (PAH) polyelectrolyte. The heterogeneous deposition was rendered by both electrostatic attraction and hydrophilic/hydrophobic interaction, and was carried out in multiple coating cycles. The resulting hybrid particles were characterized by zeta-potential measurement, electron microscopy, X-ray diffractometry, and inductively coupled plasma analysis, respectively. Optical transmittance of the ITO/Ag composite films was found to decrease substantially with the Ag deposition over the visible wavelengths range, arising mainly from scattering induced by the Ag nanoparticles
Refractory filler sands with core–shell composite structure for the taphole nozzle in slide-gate system of steel ladles
Refractory sand used for filling the taphole nozzle in slide-gate system of steel ladle needs to form a suitable sintered crust to prevent molten metal from direct contact with the gate system which, when opened, permits flow of metal from the ladle through the taphole well. Conventional filler sand consists of powdered mixtures of at least two compositions with suitable particle size and mass ratio. We herein propose a novel core–shell-structured composite particle as the refractory sand. Silicon carbide (SiC) particles with an average diameter of 50 μm were oxidized in air at 1100–1600 °C to form SiC@SiO2 core–shell structure. As the oxidation temperature increases, silica weight-ratio increases from 0.8 to 7.9 wt.%, equivalent to a calculated shell thickness of 20–157 nm, respectively. The crust thickness can be tailored by adjusting the shell thickness. X-ray photoelectron spectroscopy, X-ray diffractometry, and scanning electron microscopy were used to characterize the core–shell structure
Kinetics in HBsAg after Stopping Entecavir or Tenofovir in Patients with Virological Relapse but Not Clinical Relapse
This study investigated the kinetics in HBsAg and the HBsAg loss rate after entecavir or tenofovir disoproxil fumarate (TDF) cessation in patients with chronic hepatitis B (CHB) who achieved virological suppression after virological relapse without clinical relapse. A total 504 HBeAg-negative, non-cirrhotic patients who previously received entecavir or TDF with post-treatment and who were followed up for at least 30 months were included. Of the 504 patients, 128 achieved sustained virological suppression (Group I), and 81 experienced virological relapse without clinical relapse. Of the 81 patients, 52 had intermittent or persistent HBV DNA > 2000 IU/mL (Group II), and 29 achieved persistent virological suppression (HBV DNA p p = 0.414). A multivariate analysis showed that there were no differences in the HBsAg change and HBsAg decline (p = 0.920 and 0.886, respectively) or HBsAg loss rate (p = 0.192) between Group I and Group III. The patients who achieved persistent viral suppression after HBV relapse without clinical relapse have a similar decline in HBsAg and the HBsAg loss rate as the sustained responders
Clinical outcomes of patients with oral cavity squamous cell carcinoma and retropharyngeal lymph node metastasis identified by FDG PET/CT.
PURPOSE: Retropharyngeal lymph node (RPLN) metastasis is an uncommon finding in patients with oral cavity squamous carcinoma (OSCC). We sought to investigate the clinical outcomes, clinicopathological characteristics, and the priority of treatment with curative intent in OSCC patients with RPLN involvement. METHODS AND MATERIALS: Between January 2007 and January 2011, we identified 36 patients with primary RPLN metastases (n = 10) or RPLN relapse (n = 26). The follow-up continued until June 2013. Disease-specific survival (DSS), disease-free survival (DFS), and the potential benefits of salvage therapy served as the main outcome measures. RESULTS: The 2-year DSS and DFS rates of untreated patients with RPLN involvement were 20% and 24%, respectively. Level IV/V neck lymph node involvement was an adverse prognostic factor for DSS (P = 0.048) and DFS (P = 0.018). All of the patients presenting with neck lymph node involvement at level IV/V died within 6 months. Among patients who were treated for RPLN relapse, the 2-year DSS and DFS rates from the relapse day were 12.8% and 9.6%, respectively. Concomitant contralateral neck lymph node metastases (N2c) were associated with lower 2-year DSS (P = 0.005) and DFS (P = 0.011) rates. Moreover, five (55%) of the nine patients with recurrent disease in the contralateral RPLN had distant metastases within 6 months. Salvage therapy yielded the maximum survival benefit in patients without N2c disease and ipsilateral RPLN involvement alone (P = 0.005). CONCLUSION: OSCC patients with RPLN involvement have poor outcomes. The risk factor for definitive treatment in OSCC patients with FDG PET/CT defined RPLN disease in primary disease was neck lymph node involvement at level IV/V and N2c and/or contralateral RPLN disease in recurrent disease. Treatment efforts with curative intent should be tailored according to individual risk factors
- …