518 research outputs found

    Studies of inactivation mechanism of non-enveloped icosahedral virus by a visible ultrashort pulsed laser

    Get PDF
    BACKGROUND: Low-power ultrashort pulsed (USP) lasers operating at wavelengths of 425 nm and near infrared region have been shown to effectively inactivate viruses such as human immunodeficiency virus (HIV), M13 bacteriophage, and murine cytomegalovirus (MCMV). It was shown previously that non-enveloped, helical viruses such as M13 bacteriophage, were inactivated by a USP laser through an impulsive stimulated Raman scattering (ISRS) process. Recently, enveloped virus like MCMV has been shown to be inactivated by a USP laser via protein aggregation induced by an ISRS process. However, the inactivation mechanism for a clinically important class of viruses – non-enveloped, icosahedral viruses remains unknown. RESULTS AND DISCUSSIONS: We have ruled out the following four possible inactivation mechanisms for non-enveloped, icosahedral viruses, namely, (1) inactivation due to ultraviolet C (UVC) photons produced by non-linear optical process of the intense, fundamental laser beam at 425 nm; (2) inactivation caused by thermal heating generated by the direct laser absorption/heating of the virion; (3) inactivation resulting from a one-photon absorption process via chromophores such as porphyrin molecules, or indicator dyes, potentially producing reactive oxygen or other species; (4) inactivation by the USP lasers in which the extremely intense laser pulse produces shock wave-like vibrations upon impact with the viral particle. We present data which support that the inactivation mechanism for non-enveloped, icosahedral viruses is the impulsive stimulated Raman scattering process. Real-time PCR experiments show that, within the amplicon size of 273 bp tested, there is no damage on the genome of MNV-1 caused by the USP laser irradiation. CONCLUSION: We conclude that our model non-enveloped virus, MNV-1, is inactivated by the ISRS process. These studies provide fundamental knowledge on photon-virus interactions on femtosecond time scales. From the analysis of the transmission electron microscope (TEM) images of viral particles before and after USP laser irradiation, the locations of weak structural links on the capsid of MNV-1 were revealed. This important information will greatly aid our understanding of the structure of non-enveloped, icosahedral viruses. We envision that this non-invasive, efficient viral eradication method will find applications in the disinfection of pharmaceuticals, biologicals and blood products in the near future

    Two-dimensional protein crystallization via metal-ion coordination by naturally occurring surface histidines

    Get PDF
    A powerful and potentially general approach to the targeting and crystallization of proteins on lipid interfaces through coordination of surface histidine residues to lipid-chelated divalent metal ions is presented. This approach, which should be applicable to the crystallization of a wide range of naturally occurring or engineered proteins, is illustrated here by the crystallization of streptavidin on a monolayer of an iminodiacetate-Cu(II) lipid spread at the air-water interface. This method allows control of the protein orientation at interfaces, which is significant for the facile production of highly ordered protein arrays and for electron density mapping in structural analysis of two-dimensional crystals. Binding of native streptavidin to the iminodiacetate-Cu lipids occurs via His-87, located on the protein surface near the biotin binding pocket. The two-dimensional streptavidin crystals show a previously undescribed microscopic shape that differs from that of crystals formed beneath biotinylated lipids

    Pathogen reduction in human plasma using an ultrashort pulsed laser

    Get PDF
    Pathogen reduction is a viable approach to ensure the continued safety of the blood supply against emerging pathogens. However, the currently licensed pathogen reduction techniques are ineffective against non-enveloped viruses such as hepatitis A virus, and they introduce chemicals with concerns of side effects which prevent their widespread use. In this report, we demonstrate the inactivation of both enveloped and non-enveloped viruses in human plasma using a novel chemical-free method, a visible ultrashort pulsed laser. We found that laser treatment resulted in 2-log, 1-log, and 3-log reductions in human immunodeficiency virus, hepatitis A virus, and murine cytomegalovirus in human plasma, respectively. Laser-treated plasma showed ≥70% retention for most coagulation factors tested. Furthermore, laser treatment did not alter the structure of a model coagulation factor, fibrinogen. Ultrashort pulsed lasers are a promising new method for chemical-free, broad-spectrum pathogen reduction in human plasma

    Observation of electronic Raman scattering from Mg-doped wurtzite GaN

    Get PDF
    Electronic Raman scattering experiments have been carried out on both molecular beam epitaxy and metal-organic chemical vapor deposition-grown Mg-doped wurtzite GaN samples. Aside from the expected Raman lines, a broad structure (full width at half maximum≅15 cm−1)observed at around 841 cm−1 is attributed to the electronic Raman scattering from neutral Mg impurities in Mg-doped GaN. Our experimental results demonstrate that the energy between the ground and first excited states of Mg impurities in wurtzite GaN is about one-half of its binding energy

    Diffusion basis spectrum imaging detects axonal loss after transient dexamethasone treatment in optic neuritis mice

    Get PDF
    Optic neuritis is a frequent first symptom of multiple sclerosis (MS) for which corticosteroids are a widely employed treatment option. The Optic Neuritis Treatment Trial (ONTT) reported that corticosteroid treatment does not improve long-term visual acuity, although the evolution of underlying pathologies is unclear. In this study, we employed non-invasive diffusion basis spectrum imaging (DBSI)-derived fiber volume to quantify 11% axonal loss 2 months after corticosteroid treatment (vs. baseline) in experimental autoimmune encephalomyelitis mouse optic nerves affected by optic neuritis. Longitudinal DBSI was performed at baseline (before immunization), after a 2-week corticosteroid treatment period, and 1 and 2 months after treatment, followed by histological validation of neuropathology. Pathological metrics employed to assess the optic nerve revealed axonal protection and anti-inflammatory effects of dexamethasone treatment that were transient. Two months after treatment, axonal injury and loss were indistinguishable between PBS- and dexamethasone-treated optic nerves, similar to results of the human ONTT. Our findings in mice further support that corticosteroid treatment alone is not sufficient to prevent eventual axonal loss in ON, and strongly support the potential of DBSI as a

    Diffusion basis spectrum imaging as an adjunct to conventional MRI leads to earlier diagnosis of high-grade glioma tumor progression versus treatment effect

    Get PDF
    BACKGROUND: Following chemoradiotherapy for high-grade glioma (HGG), it is often challenging to distinguish treatment changes from true tumor progression using conventional MRI. The diffusion basis spectrum imaging (DBSI) hindered fraction is associated with tissue edema or necrosis, which are common treatment-related changes. We hypothesized that DBSI hindered fraction may augment conventional imaging for earlier diagnosis of progression versus treatment effect. METHODS: Adult patients were prospectively recruited if they had a known histologic diagnosis of HGG and completed standard-of-care chemoradiotherapy. DBSI and conventional MRI data were acquired longitudinally beginning 4 weeks post-radiation. Conventional MRI and DBSI metrics were compared with respect to their ability to diagnose progression versus treatment effect. RESULTS: Twelve HGG patients were enrolled between August 2019 and February 2020, and 9 were ultimately analyzed (5 progression, 4 treatment effect). Within new or enlarging contrast-enhancing regions, DBSI hindered fraction was significantly higher in the treatment effect group compared to progression group ( CONCLUSIONS: In the first longitudinal prospective study of DBSI in adult HGG patients, we found that in new or enlarging contrast-enhancing regions following therapy, DBSI hindered fraction is elevated in cases of treatment effect compared to those with progression. Hindered fraction map may be a valuable adjunct to conventional MRI to distinguish tumor progression from treatment effect

    Diffusion basis spectrum imaging measures anti-inflammatory and neuroprotective effects of fingolimod on murine optic neuritis

    Get PDF
    OBJECTIVE: To prospectively determine whether diffusion basis spectrum imaging (DBSI) detects, differentiates and quantitates coexisting inflammation, demyelination, axonal injury and axon loss in mice with optic neuritis (ON) due to experimental autoimmune encephalomyelitis (EAE), and to determine if DBSI accurately measures effects of fingolimod on underlying pathology. METHODS: EAE was induced in 7-week-old C57BL/6 female mice. Visual acuity (VA) was assessed daily to detect onset of ON after which daily oral-treatment with either fingolimod (1 mg/kg) or saline was given for ten weeks. In vivo DBSI scans of optic nerves were performed at baseline, 2-, 6- and 10-weeks post treatment. DBSI-derived metrics including restricted isotropic diffusion tensor fraction (putatively reflecting cellularity), non-restricted isotropic diffusion tensor fraction (putatively reflecting vasogenic edema), DBSI-derived axonal volume, axial diffusivity, λ RESULTS: Optic nerves of fingolimod-treated mice exhibited significantly better (p \u3c 0.05) VA than saline-treated group at each time point. During ten-week of treatment, DBSI-derived non-restricted and restricted-isotropic-diffusion-tensor fractions, and axonal volumes were not significantly different (p \u3e 0.05) from the baseline values in fingolimod-treated mice. Transient DBSI-λ CONCLUSION: DBSI was used to assess changes of the underlying optic nerve pathologies in EAE mice with ON, exhibiting great potential as a noninvasive outcome measure for monitoring disease progression and therapeutic efficacy for MS

    Potential Role of Platelet-Derived Growth Factor Receptor Inhibition Using Imatinib in Combination with Docetaxel in the Treatment of Recurrent Non-small Cell Lung Cancer

    Get PDF
    Introduction:Platelet-derived growth factor receptor (PDGFR) is expressed in lung cancer and is involved in angiogenesis. Preclinical models demonstrated that imatinib (Im) regulates angiogenesis through PDGFR inhibition and enhances efficacy of chemotherapy. Hypothesis: We hypothesized that Im plus docetaxel (D) would have a synergistic effect detectable by an increase in response rate in patients with recurrent non-small cell lung cancer (NSCLC).Methods:A phase II trial to evaluate Im in combination with D in patients with recurrent NSCLC was conducted. The primary end point was response rate, using a Simon two-stage design. Eligible patients had measurable disease and no more than two chemotherapy regimens. D was given at 30 mg/m2/wk intravenously ×3 every 4 weeks and oral Im at 600 mg daily for four cycles. Patients required two cycles to be evaluable for response. Nonprogressors after four cycles continued with Im maintenance until progression or for a total of 12 months.Results:Twenty-three patients were enrolled in the first stage. Toxicity was mainly nonhematologic. We observed one partial response (5.5%), four stable disease (22.2%), and 13 progressed (72.2%). Median time to progression was 1.9 months, and median overall survival was 6.1 months. Two patients who went on Im maintenance had time to progression of 7.78 months and 15.8 months.Conclusion:Im in combination with D did not achieve its primary objective of improving response rate in patients with recurrent NSCLC. An increased understanding of the complex PDGFR pathway in lung cancer and alternative strategies to inhibit it are needed
    • …
    corecore