4,175 research outputs found

    Path integral Monte Carlo simulations of silicates

    Full text link
    We investigate the thermal expansion of crystalline SiO2_2 in the β\beta-- cristobalite and the β\beta-quartz structure with path integral Monte Carlo (PIMC) techniques. This simulation method allows to treat low-temperature quantum effects properly. At temperatures below the Debye temperature, thermal properties obtained with PIMC agree better with experimental results than those obtained with classical Monte Carlo methods.Comment: 27 pages, 10 figures, Phys. Rev. B (in press

    Frequency-Dependent Squeezing for Advanced LIGO

    Get PDF
    The first detection of gravitational waves by the Laser Interferometer Gravitational-wave Observatory (LIGO) in 2015 launched the era of gravitational wave astronomy. The quest for gravitational wave signals from objects that are fainter or farther away impels technological advances to realize ever more sensitive detectors. Since 2019, one advanced technique, the injection of squeezed states of light is being used to improve the shot noise limit to the sensitivity of the Advanced LIGO detectors, at frequencies above 50\sim 50 Hz. Below this frequency, quantum back action, in the form of radiation pressure induced motion of the mirrors, degrades the sensitivity. To simultaneously reduce shot noise at high frequencies and quantum radiation pressure noise at low frequencies requires a quantum noise filter cavity with low optical losses to rotate the squeezed quadrature as a function of frequency. We report on the observation of frequency-dependent squeezed quadrature rotation with rotation frequency of 30Hz, using a 16m long filter cavity. A novel control scheme is developed for this frequency-dependent squeezed vacuum source, and the results presented here demonstrate that a low-loss filter cavity can achieve the squeezed quadrature rotation necessary for the next planned upgrade to Advanced LIGO, known as "A+."Comment: 6 pages, 2 figures, to be published in Phys. Rev. Let

    Exact Analytical Bit Error Rates for Multiple Access Chaos-Based Communication Systems

    Full text link

    Effects on the immune system associated with living near a pesticide dump site.

    Get PDF
    In this paper, we report results of the second phase of a larger study designed to evaluate the effects on the immune system of living near a Superfund site containing organochlorine pesticides, volatile organic compounds, and metals. Phase II was conducted to determine whether living near the site, consisting of six locations in Aberdeen, North Carolina, is associated with higher plasma organochlorine levels, immune suppression, or DNA damage. Each of 302 residents of Aberdeen and neighboring communities provided a blood specimen, underwent a skin test, and answered a questionnaire. Blood specimens were analyzed for organochlorine pesticides, immune markers, and micronuclei. Of 20 organochlorines tested, only DDE was detected in the blood of participants (except for one individual). Age-adjusted mean plasma DDE levels were 4.05 ppb for Aberdeen residents and 2.95 ppb (p = 0.01) for residents of neighboring communities. Residents of 40-59 years of age who lived within a mile of any site, but particularly the Farm Chemicals site, had higher plasma DDE levels than residents who lived farther away. Residents who lived near the Farm Chemicals site before versus after 1985 also had higher plasma DDE levels. Overall, there were few differences in immune markers between residents of Aberdeen and the neighboring communities. However, residents who lived closer to the dump sites had statistically significantly lower mitogen-induced lymphoproliferative activity than residents who lived farther away (p < 0.05). Residential location was not consistently associated with frequency of micronuclei or skin test responses. Although some statistically significant differences in immune markers were noted in association with residential location, the magnitude of effects are of uncertain clinical importance

    Crystal-like high frequency phonons in the amorphous phases of solid water

    Full text link
    The high frequency dynamics of low- (LDA) and high-density amorphous-ice (HDA) and of cubic ice (I_c) has been measured by inelastic X-ray Scattering (IXS) in the 1-15 nm^{-1} momentum transfer (Q) range. Sharp phonon-like excitations are observed, and the longitudinal acoustic branch is identified up to Q = 8nm^{-1} in LDA and I_c and up to 5nm^{-1} in HDA. The narrow width of these excitations is in sharp contrast with the broad features observed in all amorphous systems studied so far. The "crystal-like" behavior of amorphous ices, therefore, implies a considerable reduction in the number of decay channels available to sound-like excitations which is assimilated to low local disorder.Comment: 4 pages, 3 figure

    The electronic structure of amorphous silica: A numerical study

    Full text link
    We present a computational study of the electronic properties of amorphous SiO2. The ionic configurations used are the ones generated by an earlier molecular dynamics simulations in which the system was cooled with different cooling rates from the liquid state to a glass, thus giving access to glass-like configurations with different degrees of disorder [Phys. Rev. B 54, 15808 (1996)]. The electronic structure is described by a tight-binding Hamiltonian. We study the influence of the degree of disorder on the density of states, the localization properties, the optical absorption, the nature of defects within the mobility gap, and on the fluctuations of the Madelung potential, where the disorder manifests itself most prominently. The experimentally observed mismatch between a photoconductivity threshold of 9 eV and the onset of the optical absorption around 7 eV is interpreted by the picture of eigenstates localized by potential energy fluctuations in a mobility gap of approximately 9 eV and a density of states that exhibits valence and conduction band tails which are, even in the absence of defects, deeply located within the former band gap.Comment: 21 pages of Latex, 5 eps figure

    A combined XAS and XRD Study of the High-Pressure Behaviour of GaAsO4 Berlinite

    Full text link
    Combined X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) experiments have been carried out on GaAsO4 (berlinite structure) at high pressure and room temperature. XAS measurements indicate four-fold to six-fold coordination changes for both cations. The two local coordination transformations occur at different rates but appear to be coupled. A reversible transition to a high pressure crystalline form occurs around 8 GPa. At a pressure of about 12 GPa, the system mainly consists of octahedral gallium atoms and a mixture of arsenic in four-fold and six-fold coordinations. A second transition to a highly disordered material with both cations in six-fold coordination occurs at higher pressures and is irreversible.Comment: 8 pages, 5 figures, LaTeX2

    Quantum and Classical Orientational Ordering in Solid Hydrogen

    Full text link
    We present a unified view of orientational ordering in phases I, II, and III of solid hydrogen. Phases II and III are orientationally ordered, while the ordering objects in phase II are angular momenta of rotating molecules, and in phase III the molecules themselves. This concept provides quantitative explanation of the vibron softening, libron and roton spectra, and increase of the IR vibron oscillator strength in phase III. The temperature dependence of the effective charge parallels the frequency shifts of the IR and Raman vibrons. All three quantities are linear in the order parameter.Comment: Replaced with the final text, accepted for publication in PRL. 1 Fig. added. Misc. text revision
    corecore