4 research outputs found

    Therapeutic Potential of Annexins in Sepsis and COVID-19

    Get PDF
    Sepsis is a continuing problem in modern healthcare, with a relatively high prevalence, and a significant mortality rate worldwide. Currently, no specific anti-sepsis treatment exists despite decades of research on developing potential therapies. Annexins are molecules that show efficacy in preclinical models of sepsis but have not been investigated as a potential therapy in patients with sepsis. Human annexins play important roles in cell membrane dynamics, as well as mediation of systemic effects. Most notably, annexins are highly involved in anti-inflammatory processes, adaptive immunity, modulation of coagulation and fibrinolysis, as well as protective shielding of cells from phagocytosis. These discoveries led to the development of analogous peptides which mimic their physiological function, and investigation into the potential of using the annexins and their analogous peptides as therapeutic agents in conditions where inflammation and coagulation play a large role in the pathophysiology. In numerous studies, treatment with recombinant human annexins and annexin analogue peptides have consistently found positive outcomes in animal models of sepsis, myocardial infarction, and ischemia reperfusion injury. Annexins A1 and A5 improve organ function and reduce mortality in animal sepsis models, inhibit inflammatory processes, reduce inflammatory mediator release, and protect against ischemic injury. The mechanisms of action and demonstrated efficacy of annexins in animal models support development of annexins and their analogues for the treatment of sepsis. The effects of annexin A5 on inflammation and platelet activation may be particularly beneficial in disease caused by SARS-CoV-2 infection. Safety and efficacy of recombinant human annexin A5 are currently being studied in clinical trials in sepsis and severe COVID-19 patients

    Annexin A5 Inhibits Endothelial Inflammation Induced by Lipopolysaccharide-Activated Platelets and Microvesicles via Phosphatidylserine Binding

    No full text
    Sepsis is caused by a dysregulated immune response to infection and is a leading cause of mortality globally. To date, no specific therapeutics are available to treat the underlying septic response. We and others have shown that recombinant human annexin A5 (Anx5) treatment inhibits pro-inflammatory cytokine production and improves survival in rodent sepsis models. During sepsis, activated platelets release microvesicles (MVs) with externalization of phosphatidylserine to which Anx5 binds with high affinity. We hypothesized that recombinant human Anx5 blocks the pro-inflammatory response induced by activated platelets and MVs in vascular endothelial cells under septic conditions via phosphatidylserine binding. Our data show that treatment with wildtype Anx5 reduced the expression of inflammatory cytokines and adhesion molecules induced by lipopolysaccharide (LPS)-activated platelets or MVs in endothelial cells (p p p p < 0.001) adhesion to vascular endothelial cells in septic conditions. In conclusion, recombinant human Anx5 inhibits endothelial inflammation induced by activated platelets and MVs in septic conditions via phosphatidylserine binding, which may contribute to its anti-inflammatory effects in the treatment of sepsis

    Annexin A5 in Patients With Severe COVID-19 Disease: A Single-Center, Randomized, Double-Blind, Placebo-Controlled Feasibility Trial

    No full text
    OBJECTIVES:. To evaluate the study design and feasibility of drug administration and safety in a randomized clinical trial of recombinant human annexin A5 (SY-005), a constitutively expressed protein with anti-inflammatory, antiapoptotic, and anticoagulant properties, in patients with severe coronavirus disease 2019 (COVID-19). DESIGN:. Double-blind, randomized clinical trial. SETTING:. Two ICUs at an academic medical center. PATIENTS/SUBJECTS:. Adults admitted to the ICU with a confirmed diagnosis of COVID-19 and requiring ventilatory or vasopressor support. INTERVENTIONS:. SY-005, a recombinant human annexin A5, at 50 or 100 µg/kg IV every 12 hours for 7 days. MEASUREMENTS AND MAIN RESULTS:. We enrolled 18 of the 55 eligible patients (33%) between April 21, 2021, and February 3, 2022. We administered 82% (196/238) of the anticipated doses of study medication and 86% (169/196) were given within 1 hour of the scheduled time. There were no drug-related serious adverse events. We captured 100% of the data that would be required for measuring clinical outcomes in a phase 2 or 3 trial. LIMITATIONS:. The small sample size was a result of decreasing admissions of patients with COVID-19, which triggered a stopping rule for the trial. CONCLUSIONS:. Although enrollment was low, administration of SY-005 to critically ill patients with COVID-19 every 12 hours for up to 7 days was feasible and safe. Further clinical trials of annexin A5 for the treatment of COVID-19 are warranted. Given reduction of severe COVID-19 disease, future studies should explore the safety and effectiveness of SY-005 use in non-COVID-related sepsis

    Explaining Self-Interested Behavior of Public-Spirited Policymakers

    No full text
    corecore