17 research outputs found

    Assessing the Decision-Making Process in Human-Robot Collaboration Using a Lego-like EEG Headset

    Get PDF
    Human-robot collaboration (HRC) has become an emerging field, where the use of a robotic agent has been shifted from a supportive machine to a decision-making collaborator. A variety of factors can influence the effectiveness of decision-making processes during HRC, including the system-related (e.g., robot capability) and human-related (e.g., individual knowledgeability) factors. As a variety of contextual factors can significantly impact the human-robot decision-making process in collaborative contexts, the present study adopts a Lego-like EEG headset to collect and examine human brain activities and utilizes multiple questionnaires to evaluate participants’ cognitive perceptions toward the robot. A user study was conducted where two levels of robot capabilities (high vs. low) were manipulated to provide system recommendations. The participants were also identified into two groups based on their computational thinking (CT) ability. The EEG results revealed that different levels of CT abilities trigger different brainwaves, and the participants’ trust calibration of the robot also varies the resultant brain activities

    The IPIN 2019 Indoor Localisation Competition—Description and Results

    Get PDF
    IPIN 2019 Competition, sixth in a series of IPIN competitions, was held at the CNR Research Area of Pisa (IT), integrated into the program of the IPIN 2019 Conference. It included two on-site real-time Tracks and three off-site Tracks. The four Tracks presented in this paper were set in the same environment, made of two buildings close together for a total usable area of 1000 m 2 outdoors and and 6000 m 2 indoors over three floors, with a total path length exceeding 500 m. IPIN competitions, based on the EvAAL framework, have aimed at comparing the accuracy performance of personal positioning systems in fair and realistic conditions: past editions of the competition were carried in big conference settings, university campuses and a shopping mall. Positioning accuracy is computed while the person carrying the system under test walks at normal walking speed, uses lifts and goes up and down stairs or briefly stops at given points. Results presented here are a showcase of state-of-the-art systems tested side by side in real-world settings as part of the on-site real-time competition Tracks. Results for off-site Tracks allow a detailed and reproducible comparison of the most recent positioning and tracking algorithms in the same environment as the on-site Tracks

    Innovation in thermal cycling aging compared to isothermal aging for precipitation hardening stainless steel

    No full text
    The cyclic thermal process can assist and accelerate the kinetics of phase transformation. Conventional UNS S17400 grade stainless is characterized by a martensitic microstructure. After solution treatment, the steel was aged by thermal cycling between 600 °C and 25 °C and quenched in water in each cycle, completing under the self-designed system. The nano precipitates of very fine copper particles and larger NbC particles were found by using transmission electron microscopy (TEM). The fraction and quantity of high angle grain boundaries (HAGBs) after 36 cycles were the highest among the three numbers of thermal cycles. The peak hardness also occurred after 36 cycles and was attributed to the finest grains, high fraction of HAGBs, and the largest local microstrain. The microtwins and the reverted γ were formed by the thermal cycling process. The estimated fraction value of reverted γ was very low, below 0.1, with a calculated precipitation rate about 12.6 s−1 at t0.5

    AR-12 Has a Bactericidal Activity and a Synergistic Effect with Gentamicin against Group A Streptococcus

    No full text
    Streptococcus pyogenes (group A Streptococcus (GAS) is an important human pathogen that can cause severe invasive infection, such as necrotizing fasciitis and streptococcal toxic shock syndrome. The mortality rate of streptococcal toxic shock syndrome ranges from 20% to 50% in spite of antibiotics administration. AR-12, a pyrazole derivative, has been reported to inhibit the infection of viruses, intracellular bacteria, and fungi. In this report, we evaluated the bactericidal activities and mechanisms of AR-12 on GAS infection. Our in vitro results showed that AR-12 dose-dependently reduced the GAS growth, and 2.5 ÎŒg/mL of AR-12 significantly killed GAS within 2 h. AR-12 caused a remarkable reduction in nucleic acid and protein content of GAS. The expression of heat shock protein DnaK and streptococcal exotoxins was also inhibited by AR-12. Surveys of the GAS architecture by scanning electron microscopy revealed that AR-12-treated GAS displayed incomplete septa and micro-spherical structures protruding out of cell walls. Moreover, the combination of AR-12 and gentamicin had a synergistic antibacterial activity against GAS replication for both in vitro and in vivo infection. Taken together, these novel findings obtained in this study may provide a new therapeutic strategy for invasive GAS infection

    Detection of Microorganisms in Body Fluids via MTT-PMS Assay

    No full text
    Early detection of microorganisms is essential for the management of infectious diseases. However, this is challenging, as traditional culture methods are labor-intensive and time-consuming. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-phenazine methosulfate (MTT-PMS) assay has been used to evaluate the metabolic activity in live cells and can thus be used for detecting living microorganisms. With the addition of NaOH and Tris-EDTA, the same approach can be accelerated (within 15 min) and used for the quick detection of common bacterial pathogens. The assay results can be evaluated colorimetrically or semi-quantitatively. Here, the quick detection by MTT-PMS assay was further investigated. The assay had a detection limit of approximately 104 CFU/mL. In clinical evaluations, we used the MTT-PMS assay to detect clinical samples and bacteriuria (>105 CFU/mL). The negative predictive value of the MTT-PMS assay for determining bacteriuria was 79.59% but was 100% when the interference of abnormal blood was excluded. Thus, the MTT-PMS assay might be a potential “rule-out” tool for bacterial detection in clinical samples, at a cost of approximately USD 1 per test. Owing to its low cost, rapid results, and easy-to-use characteristics, the MTT-PMS assay may be a potential tool for microorganism detection

    Investigation of Strain-Induced Precipitation of Niobium Carbide in Niobium Micro-Alloyed Steels at Elevated Temperatures

    No full text
    Two steels with a base composition of Fe-0.2C-0.8Mn-1.2Cr (wt%) but with different niobium (Nb) contents (0.02 and 0.03 wt%) were employed to study the effect of precipitate evolution on the softening resistance in the austenite region under elevated temperature deformation. The thermomechanical procedure was executed by a deformation-dilatometer and involved double deformation processes with 25% strain at a 0.25 s−1 strain rate at 900, 925, 950, and 1000 °C. The softening ratios, reflecting the competition between recrystallization and precipitation, were evaluated. The results indicated that both steels showed better softening resistance at 900 °C than at other temperatures. However, the softening ratio of 0.03 wt% Nb-containing steel (Steel 3N) rose after 100 s at 900 °C, while 0.02 wt% Nb-containing steel (Steel 2N) maintained a low softening ratio within 300 s at 900 °C, indicating that Steel 3N was relatively non-durable. A microstructural characterization showed that in the Steel 3N sample deformed at 900 °C, recrystallization occurred more strongly than for Steel 2N after a 1000 s holding time. A follow-up analysis then showed that Steel 3N treated at 900 °C revealed a faster coarsening of the carbides than Steel 2N even in the early stage of precipitation, evidencing that Steel 2N exhibited a lower softening resistance at 900 °C

    Investigation of Strain-Induced Precipitation of Niobium Carbide in Niobium Micro-Alloyed Steels at Elevated Temperatures

    No full text
    Two steels with a base composition of Fe-0.2C-0.8Mn-1.2Cr (wt%) but with different niobium (Nb) contents (0.02 and 0.03 wt%) were employed to study the effect of precipitate evolution on the softening resistance in the austenite region under elevated temperature deformation. The thermomechanical procedure was executed by a deformation-dilatometer and involved double deformation processes with 25% strain at a 0.25 s−1 strain rate at 900, 925, 950, and 1000 °C. The softening ratios, reflecting the competition between recrystallization and precipitation, were evaluated. The results indicated that both steels showed better softening resistance at 900 °C than at other temperatures. However, the softening ratio of 0.03 wt% Nb-containing steel (Steel 3N) rose after 100 s at 900 °C, while 0.02 wt% Nb-containing steel (Steel 2N) maintained a low softening ratio within 300 s at 900 °C, indicating that Steel 3N was relatively non-durable. A microstructural characterization showed that in the Steel 3N sample deformed at 900 °C, recrystallization occurred more strongly than for Steel 2N after a 1000 s holding time. A follow-up analysis then showed that Steel 3N treated at 900 °C revealed a faster coarsening of the carbides than Steel 2N even in the early stage of precipitation, evidencing that Steel 2N exhibited a lower softening resistance at 900 °C

    Effect of Cu Additions on the Evolution of Eta-prime Precipitates in Aged AA 7075 Al–Zn–Mg–Cu Alloys

    No full text
    In the present study, after solid solution treatment, four different artificial aging treatments (100, 120, 140 and 160 °C) were performed on Al-5.98Zn-2.86Mg-1.61Cu (wt.%) alloy, denoted as 7075-LCu, and Al-5.91Zn-2.83Mg-1.98Cu (wt.%) alloy, denoted as 7075-HCu. Peak aging conditions were determined for each aging temperature at various hold time intervals of up to 24 h. It was found that both alloys possessed the optimal strengths after artificial aging at 120 °C for 24 h. Under this condition, the ultimate tensile strengths (UTSs) were 618 MPa (7075-LCu) and 623 MPa (7075-HCu), respectively. Moreover, a method was used to calculate the average sizes and number density of the major strengthening precipitates, ηâ€Č, under peak aging conditions in these two alloys from transmission electron microscopy (TEM) images and electron energy loss spectroscopy (EELS). The above results indicated that for the 7075-LCu and 7075-HCu samples with the optimal UTS strengths, the former possessed an average thickness of 2.15 nm, and a number density of 3.27 × 1017 cm−3; the latter, 2.04 nm and 3.52 × 1017 cm−3

    Effect of Natural Ageing on Subsequent Artificial Ageing of AA7075 Aluminum Alloy

    No full text
    The effects of natural ageing treatment prior to artificial ageing treatment on the microstructures and mechanical properties of AA7075 Al-5.7Zn-2.6Mg-1.5Cu-0.18Cr-0.08Mn-0.05Si-0.17Fe (wt.%) aluminum alloy have been investigated. The hardness of solution-treated samples (91.0 HV) profoundly increased to 146.8 HV after 7 days of natural ageing. The purpose of the present work was to examine the kinetic hardening evolution in subsequent artificial ageing treatments of samples naturally aged for 7 days and their counterparts without natural ageing. The former were labelled as NA-7d samples, and the latter, NA-0d samples. After artificial ageing at 120 °C for 2 h, the hardness of NA-0d samples increased rapidly to 148.2 HV, which was approximately the same as that of the specimens with natural ageing for 7 days, compensating for the prior state of lower hardness without natural ageing. After being treated at 120 °C for 16 h, the ultimate tensile strength (UTS) and yield strength (YS) of NA-7d reached the highest value, respectively, 601 MPa and 539 MPa, followed by a slight decrement of UTS when aged to 24 h. On the other hand, NA-0d specimens aged at 120 °C for 16 and 24 h showed nearly the same UTS (598 MPa); the former possessed YS of 538 MPa, and the latter, 545 MPa. The results presumably reveal that the peak ageing condition for NA-0d samples can be achieved under 24 h ageing at 120 °C. Under the same treatment at 120 °C for 24 h, the size of η’ phase in NA-7d sample (with a length of 4.96 nm) coarsened and grew larger than that in NA-0d sample (with a length of 3.46 nm). In addition, some η’ phase in the NA-7d sample was found to be transformed into the η2 phase. The results indicated that the naturally aged specimens (NA-7d) reached the peak ageing condition earlier, but did not significantly enhance the UTS in AA7075 aluminum alloy, as compared to the samples without prior natural ageing (NA-0d)
    corecore