997 research outputs found
Wireless Sensor-Based Smart-Clothing Platform for ECG Monitoring
The goal of this study is to use wireless sensor technologies to develop a smart clothes service platform for health monitoring. Our platform consists of smart clothes, a sensor node, a gateway server, and a health cloud. The smart clothes have fabric electrodes to detect electrocardiography (ECG) signals. The sensor node improves the accuracy of QRS complexes detection by morphology analysis and reduces power consumption by the power-saving transmission functionality. The gateway server provides a reconfigurable finite state machine (RFSM) software architecture for abnormal ECG detection to support online updating. Most normal ECG can be filtered out, and the abnormal ECG is further analyzed in the health cloud. Three experiments are conducted to evaluate the platform’s performance. The results demonstrate that the signal-to-noise ratio (SNR) of the smart clothes exceeds 37 dB, which is within the “very good signal” interval. The average of the QRS sensitivity and positive prediction is above 99.5%. Power-saving transmission is reduced by nearly 1980 times the power consumption in the best-case analysis
Effect of bis(hydroxymethyl) alkanoate curcuminoid derivative MTH-3 on cell cycle arrest, apoptotic and autophagic pathway in triple-negative breast adenocarcinoma MDA-MB-231 cells: An in vitro study
Curcumin has been shown to exert potential antitumor activity in vitro and in vivo involved in multiple signaling pathways. However, the application of curcumin is still limited because of its poor hydrophilicity and low bio-availability. In the present study, we investigated the therapeutic effects of a novel and water soluble bis(hydroxymethyl) alkanoate curcuminoid derivative, MTH-3, on human breast adenocarcinoma MDA-MB-231 cells. This study investigated the effect of MTH-3 on cell viability, cell cycle and induction of autophagy and apoptosis in MDA-MB-231 cells. After 24-h treatment with MTH-3, a concentration-dependent decrease in MDA-MB-231 cell viability was observed, and the IC50 value was 5.37±1.22 μM. MTH-3 significantly triggered G2/M phase arrest and apoptosis in MDA-MB-231 cells. Within a 24-h treatment, MTH-3 decreased the CDK1 activity by decreasing CDK1 and cyclin B1 protein levels. MTH-3-induced apoptosis was further confirmed by morphological assessment and Annexin V/PI staining assay. Induction of apoptosis caused by MTH-3 was accompanied by an apparent increase of DR3, DR5 and FADD and, as well as a marked decrease of Bcl-2 and Bcl-xL protein expression. MTH-3 also decreased the protein levels of Ero1, PDI, PERK and calnexin, as well as increased the expression of IRE1α, CHOP and Bip that consequently led to ER stress and MDA-MB-231 cell apoptosis. In addition, MTH-3-treated cells were involved in the autophagic process and cleavage of LC3B was observed. MTH-3 enhanced the protein levels of LC3B, Atg5, Atg7, Atg12, p62 and Beclin-1 in MDA-MB-231 cells. Finally, DNA microarray was carried out to investigate the level changes of gene expression modulated by MTH-3 in MDA-MB-231 cells. Taken together, our results suggest that MTH-3 might be a novel therapeutic agent for the treatment of triple-negative breast cancer in the near future
Viral Load Distribution in SARS Outbreak
Airborne transmission may have resulted in an outbreak of SARS in Hong Kong
Use of endobronchial one-way valves reveals questions on etiology of spontaneous pneumothorax: report of three cases
Spontaneous pneumothoraces are believed to arise when air from the supplying airway exit via a ruptured visceral pleural bleb into the pleural cavity. Endobronchial one-way valves (EBVs) allow air exit (but not entry) from individual segmental airways. Systematic deployment of EBVs was applied to three patients with secondary spontaneous pneumothoraces and persistent airleak. In all cases, balloon-catheter occlusion of the upper lobe bronchus stopped the airleak. EBVs applied to individual upper lobe segmental airways failed to terminate the airleak, which only stopped after placements of multiple EBVs to occlude all upper lobe segments. The observation questions the traditional belief of 'one-airway-one-bleb-one-leak' in spontaneous pneumothorax
A side-by-side comparison of Daya Bay antineutrino detectors
The Daya Bay Reactor Neutrino Experiment is designed to determine precisely
the neutrino mixing angle with a sensitivity better than 0.01 in
the parameter sin at the 90% confidence level. To achieve this
goal, the collaboration will build eight functionally identical antineutrino
detectors. The first two detectors have been constructed, installed and
commissioned in Experimental Hall 1, with steady data-taking beginning
September 23, 2011. A comparison of the data collected over the subsequent
three months indicates that the detectors are functionally identical, and that
detector-related systematic uncertainties exceed requirements.Comment: 24 pages, 36 figure
New measurement of via neutron capture on hydrogen at Daya Bay
This article reports an improved independent measurement of neutrino mixing
angle at the Daya Bay Reactor Neutrino Experiment. Electron
antineutrinos were identified by inverse -decays with the emitted
neutron captured by hydrogen, yielding a data-set with principally distinct
uncertainties from that with neutrons captured by gadolinium. With the final
two of eight antineutrino detectors installed, this study used 621 days of data
including the previously reported 217-day data set with six detectors. The
dominant statistical uncertainty was reduced by 49%. Intensive studies of the
cosmogenic muon-induced Li and fast neutron backgrounds and the
neutron-capture energy selection efficiency, resulted in a reduction of the
systematic uncertainty by 26%. The deficit in the detected number of
antineutrinos at the far detectors relative to the expected number based on the
near detectors yielded in the
three-neutrino-oscillation framework. The combination of this result with the
gadolinium-capture result is also reported.Comment: 26 pages, 23 figure
A new measurement of antineutrino oscillation with the full detector configuration at Daya Bay
We report a new measurement of electron antineutrino disappearance using the
fully-constructed Daya Bay Reactor Neutrino Experiment. The final two of eight
antineutrino detectors were installed in the summer of 2012. Including the 404
days of data collected from October 2012 to November 2013 resulted in a total
exposure of 6.910 GW-ton-days, a 3.6 times increase over
our previous results. Improvements in energy calibration limited variations
between detectors to 0.2%. Removal of six Am-C radioactive
calibration sources reduced the background by a factor of two for the detectors
in the experimental hall furthest from the reactors. Direct prediction of the
antineutrino signal in the far detectors based on the measurements in the near
detectors explicitly minimized the dependence of the measurement on models of
reactor antineutrino emission. The uncertainties in our estimates of
and were halved as a result of these
improvements. Analysis of the relative antineutrino rates and energy spectra
between detectors gave and eV in the three-neutrino
framework.Comment: Updated to match final published versio
- …