7,351 research outputs found

    Quantum theory of optical temporal phase and instantaneous frequency. II. Continuous time limit and state-variable approach to phase-locked loop design

    Full text link
    We consider the continuous-time version of our recently proposed quantum theory of optical temporal phase and instantaneous frequency [Tsang, Shapiro, and Lloyd, Phys. Rev. A 78, 053820 (2008)]. Using a state-variable approach to estimation, we design homodyne phase-locked loops that can measure the temporal phase with quantum-limited accuracy. We show that post-processing can further improve the estimation performance, if delay is allowed in the estimation. We also investigate the fundamental uncertainties in the simultaneous estimation of harmonic-oscillator position and momentum via continuous optical phase measurements from the classical estimation theory perspective. In the case of delayed estimation, we find that the inferred uncertainty product can drop below that allowed by the Heisenberg uncertainty relation. Although this result seems counter-intuitive, we argue that it does not violate any basic principle of quantum mechanics.Comment: 11 pages, 6 figures, v2: accepted by PR

    Constraints on the density dependence of the symmetry energy

    Full text link
    Collisions involving 112Sn and 124Sn nuclei have been simulated with the improved Quantum Molecular Dynamics transport model. The results of the calculations reproduce isospin diffusion data from two different observables and the ratios of neutron and proton spectra. By comparing these data to calculations performed over a range of symmetry energies at saturation density and different representations of the density dependence of the symmetry energy, constraints on the density dependence of the symmetry energy at sub-normal density are obtained. Results from present work are compared to constraints put forward in other recent analysis.Comment: 8 pages, 4 figures,accepted for publication in Phy. Rev. Let

    Ziv-Zakai Error Bounds for Quantum Parameter Estimation

    Full text link
    I propose quantum versions of the Ziv-Zakai bounds as alternatives to the widely used quantum Cram\'er-Rao bounds for quantum parameter estimation. From a simple form of the proposed bounds, I derive both a "Heisenberg" error limit that scales with the average energy and a limit similar to the quantum Cram\'er-Rao bound that scales with the energy variance. These results are further illustrated by applying the bound to a few examples of optical phase estimation, which show that a quantum Ziv-Zakai bound can be much higher and thus tighter than a quantum Cram\'er-Rao bound for states with highly non-Gaussian photon-number statistics in certain regimes and also stay close to the latter where the latter is expected to be tight.Comment: v1: preliminary result, 3 pages; v2: major update, 4 pages + supplementary calculations, v3: another major update, added proof of "Heisenberg" limit, v4: accepted by PR

    The reproductive cycle of the thorny skate (Amblyraja radiata) in the western Gulf of Maine

    Get PDF
    The thorny skate (Amblyraja radiata) is a large species of skate that is endemic to the waters of the western north Atlantic in the Gulf of Maine. Because the biomass of thorny skates has recently declined below threshold levels mandated by the Sustainable Fisheries Act, commercial harvests from this region are prohibited. We have undertaken a comprehensive study to gain insight into the life history of this skate. The present study describes and characterizes the reproductive cycle of female and male thorny skates, based on monthly samples taken off the coast of New Hampshire, from May 2001 to May 2003. Gonadosomatic index (GSI), shell gland weight, follicle size, and egg case formation, were assessed for 48 female skates. In general, these reproductive parameters remained relatively constant throughout most of the year. However, transient but significant increases in shell gland weight and GSI were obser ved during certain months. Within the cohort of specimens sampled monthly throughout the year, a subset of females always had large preovulatory follicles present in their ovaries. With the exception of June and September specimens, egg cases undergoing various stages of development were observed in the uteri of specimens captured during all other months of the year. For males (n=48), histological stages III through VI (SIII−SVI) of spermatogenesis, GSI, and hepatosomatic index (HSI) were examined. Although there appeared to be monthly fluctuations in spermatogenesis, GSI, and HSI, no significant differences were found. The production and maintenance of mature spermatocysts (SVI) within the testes was observed throughout the year. These findings collectively indicate that the thorny skate is reproductively active year round

    Probing nuclear symmetry energy with the sub-threshold pion production

    Full text link
    Within the framework of semiclassical Boltzmann-Uehling-Uhlenbeck (BUU) transport model, we investigated the effects of symmetry energy on the sub-threshold pion using the isospin MDI interaction with the stiff and soft symmetry energies in the central collision of 48^{48}Ca + 48^{48}Ca at the incident beam energies of 100, 150, 200, 250 and 300 MeV/nucleon, respectively. We find that the ratio of π−/π+\pi^{-}/\pi^{+} of sub-threshold charged pion production is greatly sensitive to the symmetry energy, particularly around 100 MeV/nucleon energies. Large sensitivity of sub-threshold charged pion production to nuclear symmetry energy may reduce uncertainties of probing nuclear symmetry energy via heavy-ion collision.Comment: 5 pages, 5 figures, typo corrections, submitted to Chinese Physics Letter

    Antimicrobial rationing in orthopaedic surgery

    Get PDF
    • …
    corecore