17 research outputs found

    Training a HyperDimensional Computing Classifier using a Threshold on its Confidence

    Full text link
    Hyperdimensional computing (HDC) has become popular for light-weight and energy-efficient machine learning, suitable for wearable Internet-of-Things (IoT) devices and near-sensor or on-device processing. HDC is computationally less complex than traditional deep learning algorithms and achieves moderate to good classification performance. This article proposes to extend the training procedure in HDC by taking into account not only wrongly classified samples, but also samples that are correctly classified by the HDC model but with low confidence. As such, a confidence threshold is introduced that can be tuned for each dataset to achieve the best classification accuracy. The proposed training procedure is tested on UCIHAR, CTG, ISOLET and HAND dataset for which the performance consistently improves compared to the baseline across a range of confidence threshold values. The extended training procedure also results in a shift towards higher confidence values of the correctly classified samples making the classifier not only more accurate but also more confident about its predictions

    Co-learning synaptic delays, weights and adaptation in spiking neural networks

    Full text link
    Spiking neural networks (SNN) distinguish themselves from artificial neural networks (ANN) because of their inherent temporal processing and spike-based computations, enabling a power-efficient implementation in neuromorphic hardware. In this paper, we demonstrate that data processing with spiking neurons can be enhanced by co-learning the connection weights with two other biologically inspired neuronal features: 1) a set of parameters describing neuronal adaptation processes and 2) synaptic propagation delays. The former allows the spiking neuron to learn how to specifically react to incoming spikes based on its past. The trained adaptation parameters result in neuronal heterogeneity, which is found in the brain and also leads to a greater variety in available spike patterns. The latter enables to learn to explicitly correlate patterns that are temporally distanced. Synaptic delays reflect the time an action potential requires to travel from one neuron to another. We show that each of the co-learned features separately leads to an improvement over the baseline SNN and that the combination of both leads to state-of-the-art SNN results on all speech recognition datasets investigated with a simple 2-hidden layer feed-forward network. Our SNN outperforms the ANN on the neuromorpic datasets (Spiking Heidelberg Digits and Spiking Speech Commands), even with fewer trainable parameters. On the 35-class Google Speech Commands dataset, our SNN also outperforms a GRU of similar size. Our work presents brain-inspired improvements to SNN that enable them to excel over an equivalent ANN of similar size on tasks with rich temporal dynamics.Comment: 15 pages, 8 figure
    corecore