8 research outputs found

    Cognitive-behavioural group therapy for Hong Kong Chinese adults with mental health problems

    No full text
    Ninety-one Chinese in the community, aged between 18 and 45, with mental health problems ranging from mild to moderate degree, were treated by cognitive behavioural group therapy (CBGT) for a period of 3 months. All subjects were assessed on multiple measures at 4 time points: screening, pre-treatment (after 3 months), post-treatment and at 3-month follow-up. Attendance was good. A standard practice manual was developed to ensure consistent treatment by 2 group workers. After controlling for the placebo effect in the waiting period, treatment effect was demonstrated which was sustained after a three month period. The all-round improvement included a decrease in psychiatric symptoms, improvement in self-assessment, better and more social activities and being more able to cope with problems. In terms of psychiatric diagnosis, depressed subjects gained the most benefit and personality disorder subjects the least. Parents seemed to benefit more than non-parents.link_to_subscribed_fulltex

    An RNA-directed nucleoside anti-metabolite, 1-(3-C-ethynyl-beta-d-ribo-pentofuranosyl)cytosine (ECyd), elicits antitumor effect via TP53-induced Glycolysis and Apoptosis Regulator (TIGAR) downregulation

    No full text
    1-(3-C-ethynyl-beta-d-ribo-pentofuranosyl)cytosine (ECyd) is a ribose-modified nucleoside analog of cytidine with potent anticancer activity in several cancers. The main antitumor mechanism of this promising RNA-directed nucleoside anti-metabolite is efficient blockade of RNA synthesis in cancer cells. Here, we examined the therapeutic potential of this RNA-directed anti-metabolite in in vitro models of nasopharyngeal cancer (NPC). In a panel of 6 NPC cell lines, ECyd effectively inhibited cellular proliferation at nM concentrations (IC 50:∼13-44nM). Moreover, cisplatin-resistant NPC cells were highly sensitive to ECyd (at nM concentration). The ECyd-mediated growth inhibition was associated with G 2/M cell cycle arrest, PARP cleavage (a hallmark of apoptosis) and Bcl-2 downregulation, indicating induction of apoptosis by ECyd in NPC cells. Unexpectedly, ECyd-induced significant downregulation of TIGAR, a newly described dual regulator of apoptosis and glycolysis. More importantly, this novel action of ECyd on TIGAR was accompanied by marked depletion of NADPH, the major reducing power critically required for cell proliferation and survival. We hypothesized that ECyd-induced TIGAR downregulation was crucially involved in the antitumor activity of ECyd. Indeed, overexpression of TIGAR was able to rescue NPC cells from ECyd-induced growth inhibition, demonstrating a novel mechanistic action of ECyd on TIGAR. We demonstrated for the first time that an RNA-directed nucleoside analog, ECyd, exerts its antitumor activity via downregulation of a novel regulator of apoptosis, TIGAR. Moreover, ECyd may represent a novel therapy for NPC. © 2010 Elsevier Inc.link_to_subscribed_fulltex

    Preclinical evaluation of the mTOR-PI3K inhibitor BEZ235 in nasopharyngeal cancer models

    No full text
    The dual PI3K-mTOR inhibitor BEZ235 was evaluated in preclinical models of nasopharyngeal carcinoma (NPC). The IC50 value of BEZ235 for growth was in the nanomolar range in vitro, induce G1 cycle arrest and apoptosis, and inhibited AKT and mTOR signaling in most NPC cell lines. No synergistic effect was observed when BEZ235 was combined with chemotherapy. BEZ235 increased MAPK activation in vitro but not in vivo. A daily schedule was more effective than a weekly schedule on tumor growth and inhibition of downstream mTOR signaling in vivo. The activity of BEZ235 maybe independent of the PIK3CA amplification and mutation status. © 2013 Elsevier Ireland Ltd.link_to_subscribed_fulltex

    Isolation and characterization of a novel Betacoronavirus subgroup a coronavirus, rabbit coronavirus HKU14, from domestic rabbits

    No full text
    We describe the isolation and characterization of a novel Betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14 (RbCoV HKU14), from domestic rabbits. The virus was detected in 11 (8.1%) of 136 rabbit fecal samples by reverse transcriptase PCR (RT-PCR), with a viral load of up to 108 copies/ml. RbCoV HKU14 was able to replicate in HRT-18G and RK13 cells with cytopathic effects. Northern blotting confirmed the production of subgenomic mRNAs coding for the HE, S, NS5a, E, M, and N proteins. Subgenomic mRNA analysis revealed a transcription regulatory sequence, 5′-UCUAAAC-3′. Phylogenetic analysis showed that RbCoV HKU14 formed a distinct branch among Betacoronavirus subgroup A coronaviruses, being most closely related to but separate from the species Betacoronavirus 1. A comparison of the conserved replicase domains showed that Rb-CoV HKU14 possessed <90% amino acid identities to most members of Betacoronavirus 1 in ADP-ribose 1"-phosphatase (ADRP) and nidoviral uridylate-specific endoribonuclease (NendoU), indicating that RbCoV HKU14 should represent a separate species. RbCoV HKU14 also possessed genomic features distinct from those of other Betacoronavirus subgroup A coronaviruses, including a unique NS2a region with a variable number of small open reading frames (ORFs). Recombination analysis revealed possible recombination events during the evolution of RbCoV HKU14 and members of Betacoronavirus 1, which may have occurred during cross-species transmission. Molecular clock analysis using RNA-dependent RNA polymerase (RdRp) genes dated the most recent common ancestor of RbCoV HKU14 to around 2002, suggesting that this virus has emerged relatively recently. Antibody against RbCoV was detected in 20 (67%) of 30 rabbit sera tested by an N-protein-based Western blot assay, whereas neutralizing antibody was detected in 1 of these 20 rabbits. © 2012, American Society for Microbiology.link_to_OA_fulltex

    FGF8b oncogene mediates proliferation and invasion of Epstein-Barr virus-associated nasopharyngeal carcinoma cells: Implication for viral-mediated FGF8b upregulation

    No full text
    The fibroblast growth factor 8b (FGF8b) oncogene is known to be primarily involved in the tumorigenesis and progression of hormone-related cancers. Its role in other epithelial cancers has not been investigated, except for esophageal cancer, in which FGF8b overexpression was mainly found in tumor biopsies of male patients. These observations were consistent with previous findings in these cancer types that the male sex-hormone androgen is responsible for FGF8b expression. Nasopharyngeal carcinoma (NPC) is a highly metastatic cancer of head and neck commonly found in Asia. It is etiologically associated with Epstein-Barr Virus (EBV) infection, inflammatory tumor microenvironment and relatively higher male predominance. Here, we reported for the first time that FGF8b is overexpressed in this EBV-associated non-hormone-related cancer of the head and neck, NPC. More importantly, overexpression of FGF8b mRNA and protein was detected in a large majority of NPC tumors from both male and female genders, in addition to multiple NPC cell lines. We hypothesized that FGF8b overexpression may contribute to NPC tumorigenesis. Using EBV-associated NPC cell lines, we demonstrated that specific knockdown of FGF8b by small interfering RNA inhibited cell proliferation, migration and invasion, whereas exogenous FGF8b stimulated these multiple phenotypes. Further mechanistic investigation revealed that in addition to NF-B signaling (a major inflammatory signaling pathway known to be activated in NPC), an important EBV oncoprotein, the latent membrane protein 1 (LMP1), was found to be a direct inducer of FGF8b overexpression in NPC cells, whereas androgen (testosterone) has minimal effect on FGF8b expression in EBV-associated NPC cells. In summary, our study has identified LMP1 as the first viral oncogene capable of directly inducing FGF8b (an important cellular oncogene) expression in human cancer cells. This novel mechanism of viral-mediated FGF8 upregulation may implicate a new role of oncoviruses in human carcinogenesis. © 2011 Macmillan Publishers Limited All rights reserved.link_to_subscribed_fulltex
    corecore