134 research outputs found

    Unraveling the Role of the Stoichiometry of Atomic LayerDeposited Nickel Cobalt Oxides on the Oxygen Evolution Reaction

    Get PDF
    Nickel cobalt oxides (NCOs) are promising, non-precious oxygen evolution reaction (OER) electrocatalysts. However, the stoichiometry-dependent electrochemical behavior makes it crucial to understand the structure-OER relationship. In this work, NCO thin film model systems are prepared using atomic layer deposition. In-depth film characterization shows the phase transition from Ni-rich rock-salt films to Co-rich spinel films. Electrochemical analysis in 1 m KOH reveals a synergistic effect between Co and Ni with optimal performance for the 30 at.% Co film after 500 CV cycles. Electrochemical activation correlates with film composition, specifically increasing activation is observed for more Ni-rich films as its bulk transitions to the active (oxy)hydroxide phase. In parallel to this transition, the electrochemical surface area (ECSA) increases up to a factor 8. Using an original approach, the changes in ECSA are decoupled from intrinsic OER activity, leading to the conclusion that 70 at.% Co spinel phase NCO films are intrinsically the most active. The studies point to a chemical composition dependent OER mechanism: Co-rich spinel films show instantly high activities, while the more sustainable Ni-rich rock-salt films require extended activation to increase the ECSA and OER performance. The results highlight the added value of working with model systems to disclose structure-performance mechanisms

    Control by atomic layer deposition over the chemical composition of nickel cobalt oxide for the oxygen evolution reaction

    Get PDF
    Anion exchange membrane water electrolysis (AEMWE) is a promising technology for renewable electricity-driven water splitting toward hydrogen production. However, application of AEMWE at industrial scale requires the development of oxygen evolution reaction (OER) electrocatalysts showing long-term stability under mild alkaline conditions. Among these, nickel cobalt oxide thin films are considered promising candidates. The ideal chemical composition of these oxides remains debatable, with recent literature indicating that rock-salt NiCoO2 may exhibit similar OER activity as the traditional spinel NiCo2O4. In this work, we present the development of a plasma-enhanced atomic layer deposition (ALD) process of nickel cobalt oxide thin films (∼20 nm) with focus on the role of their chemical composition and crystal structure on the OER activity. The film composition is tuned using a supercycle approach built upon CoOx cycles with CoCp2 as a precursor and O2 plasma as a co-reactant and NiOx cycles with Ni(MeCp)2 as a precursor and O2 plasma as a co-reactant. The films exhibit a change in the crystallographic phase from the rock-salt to spinel structure for increasing cobalt at. %. This change is accompanied by an increase in the Ni3+-to-Ni2+ ratio. Interestingly, an increase in electrical conductivity is observed for mixed oxides, with an optimum of (2.4 ± 0.2) × 102 S/cm at 64 at. % Co, outperforming both NiO and Co3O4 by several orders of magnitude. An optimal electrocatalytic performance is observed for 80 at. % Co films. Cyclic voltammetry measurements simultaneously show a strong dependence of the OER-catalytic performance on the electrical conductivity. The present study highlights the merit of ALD in controlling the nickel cobalt oxide chemical composition and crystal structure to gain insight into its electrocatalytic performance. Moreover, these results suggest that it is important to disentangle conductivity effects from the electrocatalytic activity in future work

    Globally valid relations converting magnitudes of intermediate and deep-focus earthquakes to MW

    Get PDF
    Μία βασική διεργασία κατά τη σύνταξη ομογενών και πλήρων καταλόγων σεισμικότητας είναι η διεξοδική διερεύνηση των δυνητικά εύρωστων σχέσεων που συνδέουν μεταξύ τους κλίμακες διαφορετικών μεγεθών. Η συντριπτική πλειονότητα των ήδη δημοσιευμένων σχέσεων αφορά ως επί το πλείστον δεδομένα επιφανειακών σεισμών με εστιακά βάθη μέχρι και τα 60-70 χιλιόμετρα. Στην παρούσα εργασία, διαφορετικές κλίμακες μεγέθους προερχόμενες από 66 κέντρα σε παγκόσμια κλίμακα, σε συνδυασμό με ήδη δημοσιευμένους καταλόγους, εξετάζονται για σεισμούς με εστιακά βάθη  61-700 χιλιομέτρων. Εφαρμόζοντας ανάλυση ελαχίστων τετραγώνων προέκυψαν 12 νέες αξιόπιστες σχέσεις βαθμονόμησης που συνδέουν τις αντίστοιχες κλίμακες μεγεθών με το μέγεθος σεισμικής ροπής. Μεταξύ άλλω ελέγχθηκαν οι κλίμακες  χωρικού (mb) και επιφανειακού μεγέθους (Ms) που ανακοινώνονται από Διεθνή (ISC, NEIC και IDC) και εθνικά κέντρα ( MOS από Μόσχα,  BJI από Πεκίνο,  DJA από Τζακάρτα) καθώς και το μέγεθος που υπολογίζεται από το JMA (Ιαπωνία). Από τα παραπάνω αποτελέσματα προκύπτουν σημαντικές παρατηρήσεις σχετικά με την συμπεριφορά ορισμένων από τις κλίμακες μεγέθους. Αξιοσημείωτη είναι η διαφοροποίηση που παρατηρείται ως προς τους ενδιαμέσου και τους μεγάλου βάθους σεισμούς για το χωρικό μέγεθος mb του IDC. Επιπλέον, η σύγκριση του μεγέθους σεισμικής ροπής του NIED με τα αντίστοιχα μεγέθη από GCMT και NEIC αναδεικνύει ένα εμφανώς κατώτερο επίπεδο "κορεσμού" προσδιοριζόμενο περίπου στη τιμή 5.0An essential step in the compilation of homogeneous and complete earthquake catalogs is the thorough investigation of potentially robust relations between different magnitude scales. The vast majority of already published relations usually concerns shallow-focus earthquake data with depths up to 60-70 km. In the present study, several magnitude scales reported by 66 world-wide data providers in conjunction with published catalogs are examined within the depth range of 61-700 km, by applying least-squares regression analysis. Among other widely used scales, as body wave (mb, mB) and surface wave (Ms) magnitudes cited by International Centers (i.e. ISC, NEIC and IDC), the behavior of relevant magnitude scales determined by MOS (Moscow, Russia), BJI (Beijing, China), DJA (Djakarta, Indonesia) and the Japanese magnitude calculated by JMA, is also examined. By this way, robust calibrating relationships of 12 magnitude scales to the moment magnitudes provided by GCMT, NEIC and JMA are defined. From the obtained results important observations on the behavior of certain magnitude scales were made. Thus, a remarkable variation of mb scale cited by IDC could be noted for intermediate and deep focus events. Furthermore, a comparison with the Mw of NIED revealed an apparent lower “saturation” level around 5.0 below which the moment magnitude values published by GCMT and NEIC, are systematically overestimated

    Solar Hydrogen Generation from Ambient Humidity Using Functionalized Porous Photoanodes

    Get PDF
    Solar hydrogen is a promising sustainable energy vector, and steady progress has been made in the development of photoelectrochemical (PEC) cells. Most research in this field has focused on using acidic or alkaline liquid electrolytes for ionic transfer. However, the performance is limited by (i) scattering of light and blocking of catalytic sites by gas bubbles and (ii) mass transport limitations. An attractive alternative to a liquid water feedstock is to use the water vapor present as humidity in ambient air, which has been demonstrated to mitigate the above problems and can expand the geographical range where these devices can be utilized. Here, we show how the functionalization of porous TiO2 and WO3 photoanodes with solid electrolytes—proton conducting Aquivion and Nafion ionomers—enables the capture of water from ambient air and allows subsequent PEC hydrogen production. The optimization strategy of photoanode functionalization was examined through testing the effect of ionomer loading and the ionomer composition. Optimized functionalized photoanodes operating at 60% relative humidity (RH) and Tcell = 30–70 °C were able to recover up to 90% of the performance obtained at 1.23 V versus reverse hydrogen electrode (RHE) when water is introduced in the liquid phase (i.e., conventional PEC operation). Full performance recovery is achieved at a higher applied potential. In addition, long-term experiments have shown remarkable stability at 60% RH for 64 h of cycling (8 h continuous illumination–8 h dark), demonstrating that the concept can be applicable outdoors.</p

    Globally valid relations converting magnitudes of intermediate and deep-focus earthquakes to MW

    Get PDF
    Μία βασική διεργασία κατά τη σύνταξη ομογενών και πλήρων καταλόγων σεισμικότητας είναι η διεξοδική διερεύνηση των δυνητικά εύρωστων σχέσεων που συνδέουν μεταξύ τους κλίμακες διαφορετικών μεγεθών. Η συντριπτική πλειονότητα των ήδη δημοσιευμένων σχέσεων αφορά ως επί το πλείστον δεδομένα επιφανειακών σεισμών με εστιακά βάθη μέχρι και τα 60-70 χιλιόμετρα. Στην παρούσα εργασία, διαφορετικές κλίμακες μεγέθους προερχόμενες από 66 κέντρα σε παγκόσμια κλίμακα, σε συνδυασμό με ήδη δημοσιευμένους καταλόγους, εξετάζονται για σεισμούς με εστιακά βάθη  61-700 χιλιομέτρων. Εφαρμόζοντας ανάλυση ελαχίστων τετραγώνων προέκυψαν 12 νέες αξιόπιστες σχέσεις βαθμονόμησης που συνδέουν τις αντίστοιχες κλίμακες μεγεθών με το μέγεθος σεισμικής ροπής. Μεταξύ άλλω ελέγχθηκαν οι κλίμακες  χωρικού (mb) και επιφανειακού μεγέθους (Ms) που ανακοινώνονται από Διεθνή (ISC, NEIC και IDC) και εθνικά κέντρα ( MOS από Μόσχα,  BJI από Πεκίνο,  DJA από Τζακάρτα) καθώς και το μέγεθος που υπολογίζεται από το JMA (Ιαπωνία). Από τα παραπάνω αποτελέσματα προκύπτουν σημαντικές παρατηρήσεις σχετικά με την συμπεριφορά ορισμένων από τις κλίμακες μεγέθους. Αξιοσημείωτη είναι η διαφοροποίηση που παρατηρείται ως προς τους ενδιαμέσου και τους μεγάλου βάθους σεισμούς για το χωρικό μέγεθος mb του IDC. Επιπλέον, η σύγκριση του μεγέθους σεισμικής ροπής του NIED με τα αντίστοιχα μεγέθη από GCMT και NEIC αναδεικνύει ένα εμφανώς κατώτερο επίπεδο "κορεσμού" προσδιοριζόμενο περίπου στη τιμή 5.0An essential step in the compilation of homogeneous and complete earthquake catalogs is the thorough investigation of potentially robust relations between different magnitude scales. The vast majority of already published relations usually concerns shallow-focus earthquake data with depths up to 60-70 km. In the present study, several magnitude scales reported by 66 world-wide data providers in conjunction with published catalogs are examined within the depth range of 61-700 km, by applying least-squares regression analysis. Among other widely used scales, as body wave (mb, mB) and surface wave (Ms) magnitudes cited by International Centers (i.e. ISC, NEIC and IDC), the behavior of relevant magnitude scales determined by MOS (Moscow, Russia), BJI (Beijing, China), DJA (Djakarta, Indonesia) and the Japanese magnitude calculated by JMA, is also examined. By this way, robust calibrating relationships of 12 magnitude scales to the moment magnitudes provided by GCMT, NEIC and JMA are defined. From the obtained results important observations on the behavior of certain magnitude scales were made. Thus, a remarkable variation of mb scale cited by IDC could be noted for intermediate and deep focus events. Furthermore, a comparison with the Mw of NIED revealed an apparent lower “saturation” level around 5.0 below which the moment magnitude values published by GCMT and NEIC, are systematically overestimated

    Enhancing the Electrocatalytic Activity of Redox Stable Perovskite Fuel Electrodes in Solid Oxide Cells by Atomic Layer-Deposited Pt Nanoparticles

    Get PDF
    The carbon dioxide and steam co-electrolysis in solid oxide cells offers an efficient way to store the intermittent renewable electricity in the form of syngas (CO + H2), which constitutes a key intermediate for the chemical industry. The co-electrolysis process, however, is challenging in terms of materials selection. The cell composites, and particularly the fuel electrode, are required to exhibit adequate stability in redox environments and coking that rules out the conventional Ni cermets. La0.75Sr0.25Cr0.5Mn0.5O3 (LSCrM) perovskite oxides represent a promising alternative solution, but with electrocatalytic activity inferior to the conventional Ni-based cermets. Here, we report on how the electrochemical properties of a state-of-the-art LSCrM electrode can be significantly enhanced by introducing uniformly distributed Pt nanoparticles (18 nm) on its surface via the atomic layer deposition (ALD). At 850 °C, Pt nanoparticle deposition resulted in a ∼62% increase of the syngas production rate during electrolysis mode (at 1.5 V), whereas the power output was improved by ∼84% at fuel cell mode. Our results exemplify how the powerful ALD approach can be employed to uniformly disperse small amounts (∼50 μg·cm–2) of highly active metals to boost the limited electrocatalytic properties of redox stable perovskite fuel electrodes with efficient material utilization.</p

    Plasma activated electrolysis for cogeneration of nitric oxide and hydrogen from water and nitrogen

    Get PDF
    With increasing global interest in renewable energy technology given the backdrop of climate change, storage of electrical energy has become particularly relevant. Most sustainable technologies (e.g., wind and solar) produce electricity intermittently. Thus, converting electrical energy and base molecules (i.e., H2O, N2) into energy-rich ones (e.g., H2, NH3) or chemical feedstock (e.g., NO) is of paramount importance. While H2O splitting is compatible with renewable electricity, N2 fixation is currently dominated by thermally activated processes. In this work, we demonstrate an all-electric route for simultaneous NO and H2 production. In our approach, H2O is reduced to H2 in the cathode of a solid oxide electrolyzer while NO is produced in the anode by the reaction of O2– species (transported via the electrolyte) and plasma-activated N2 species. High faradaic efficiencies up to 93% are achieved for NO production at 650 °C, and NO concentration is &gt;1000 times greater than the equilibrium concentration at the same temperature and pressure.</p

    Electrochemical membrane reactor for oxygen separation after CO2 plasmolysis

    Get PDF

    Symmetrical Exsolution of Rh Nanoparticles in Solid Oxide Cells for Efficient Syngas Production from Greenhouse Gases

    Get PDF
    Carbon dioxide and steam solid oxide co-electrolysis is a key technology for exploiting renewable electricity to generate syngas feedstock for the Fischer–Tropsch synthesis. The integration of this process with methane partial oxidation in a single cell can eliminate or even reverse the electrical power demands of co-electrolysis, while simultaneously producing syngas at industrially attractive H2/CO ratios. Nevertheless, this system is rather complex and requires catalytically active and coke tolerant electrodes. Here, we report on a low-substitution rhodium-titanate perovskite (La0.43Ca0.37Rh0.06Ti0.94O3) electrode for the process, capable of exsolving high Rh nanoparticle populations, and assembled in a symmetrical solid oxide cell configuration. By introducing dry methane to the anode compartment, the electricity demands are impressively decreased, even allowing syngas and electricity cogeneration. To provide further insight on the Rh nanoparticles role on methane-to-syngas conversion, we adjusted their size and population by altering the reduction temperature of the perovskite. Our results exemplify how the exsolution concept can be employed to efficiently exploit noble metals for activating low-reactivity greenhouse gases in challenging energy-related applications.</p

    Rational Design of Photoelectrodes for the Fully Integrated Polymer Electrode Membrane–Photoelectrochemical Water-Splitting System: A Case Study of Bismuth Vanadate

    Get PDF
    Photoelectrochemical (PEC) reactors based on polymer electrolyte membrane (PEM) electrolyzers are an attractive alternative to improve scalability compared to conventional monolithic devices. To introduce narrow band gap photoabsorbers such as BiVO4 in PEM-PEC system requires cost-effective and scalable deposition techniques beyond those previously demonstrated on monolithic FTO-coated glass substrates, followed by the preparation of membrane electrode assemblies. Herein, we address the significant challenges in coating narrow band gap metal-oxides on porous substrates as suitable photoelectrodes for the PEM-PEC configuration. In particular, we demonstrate the deposition and integration of W-doped BiVO4 on porous conductive substrates by a simple, cost-effective, and scalable deposition based on the SILAR (successive ionic layer adsorption and reaction) technique. The resultant W-doped BiVO4 photoanode exhibits a photocurrent density of 2.1 mA·cm–2, @1.23V vs RHE, the highest reported so far for the BiVO4 on any porous substrates. Furthermore, we integrated the BiVO4 on the PEM-PEC reactor to demonstrate the solar hydrogen production from ambient air with humidity as the only water source, retaining 1.55 mA·cm–2, @1.23V vs RHE. The concept provides insights into the features necessary for the successful development of materials suitable for the PEM-PEC tandem configuration reactors and the gas-phase operation of the reactor, which is a promising approach for low-cost, large-scale solar hydrogen production.</p
    corecore