2 research outputs found
Collective Charge Fluctuations in Single-Electron Processes on Nano-Networks
Using numerical modeling we study emergence of structure and
structure-related nonlinear conduction properties in the self-assembled
nanoparticle films. Particularly, we show how different nanoparticle networks
emerge within assembly processes with molecular bio-recognition binding. We
then simulate the charge transport under voltage bias via single-electron
tunnelings through the junctions between nanoparticles on such type of
networks. We show how the regular nanoparticle array and topologically
inhomogeneous nanonetworks affect the charge transport. We find long-range
correlations in the time series of charge fluctuation at individual
nanoparticles and of flow along the junctions within the network. These
correlations explain the occurrence of a large nonlinearity in the simulated
and experimentally measured current-voltage characteristics and non-Gaussian
fluctuations of the current at the electrode.Comment: 10 pages, 7 figure