121 research outputs found
Gallium hydride vapor phase epitaxy of GaN nanowires
Straight GaN nanowires (NWs) with diameters of 50 nm, lengths up to 10 μm and a hexagonal wurtzite crystal structure have been grown at 900°C on 0.5 nm Au/Si(001) via the reaction of Ga with NH3 and N2:H2, where the H2 content was varied between 10 and 100%. The growth of high-quality GaN NWs depends critically on the thickness of Au and Ga vapor pressure while no deposition occurs on plain Si(001). Increasing the H2 content leads to an increase in the growth rate, a reduction in the areal density of the GaN NWs and a suppression of the underlying amorphous (α)-like GaN layer which occurs without H2. The increase in growth rate with H2 content is a direct consequence of the reaction of Ga with H2 which leads to the formation of Ga hydride that reacts efficiently with NH3 at the top of the GaN NWs. Moreover, the reduction in the areal density of the GaN NWs and suppression of the α-like GaN layer is attributed to the reaction of H2 with Ga in the immediate vicinity of the Au NPs. Finally, the incorporation of H2 leads to a significant improvement in the near band edge photoluminescence through a suppression of the non-radiative recombination via surface states which become passivated not only via H2, but also via a reduction of O2-related defects
Dramatic reduction of surface recombination by in-situ surface passivation of silicon nanowires
Nanowires have unique optical properties [1-4] and are considered as
important building blocks for energy harvesting applications such as solar
cells. [2, 5-8] However, due to their large surface-to-volume ratios, the
recombination of charge carriers through surface states reduces the carrier
diffusion lengths in nanowires a few orders of magnitude,[9] often resulting in
the low efficiency (a few percent or less) of nanowire-based solar cells. [7,
8, 10, 11] Reducing the recombination by surface passivation is crucial for the
realization of high performance nanosized optoelectronic devices, but remains
largely unexplored. [7, 12-14] Here we show that a thin layer of amorphous
silicon (a-Si) coated on a single-crystalline silicon nanowire (sc-SiNW),
forming a core-shell structure in-situ in the vapor-liquid-solid (VLS) process,
reduces the surface recombination nearly two orders of magnitude. Under
illumination of modulated light, we measure a greater than 90-fold improvement
in the photosensitivity of individual core-shell nanowires, compared to regular
nanowires without shell. Simulations of the optical absorption of the nanowires
indicate that the strong absorption of the a-Si shell contributes to this
effect, but we conclude that the effect is mainly due to the enhanced carrier
lifetime by surface passivation
Flexible Dye-Sensitized Solar Cell Based on Vertical ZnO Nanowire Arrays
Flexible dye-sensitized solar cells are fabricated using vertically aligned ZnO nanowire arrays that are transferred onto ITO-coated poly(ethylene terephthalate) substrates using a simple peel-off process. The solar cells demonstrate an energy conversion efficiency of 0.44% with good bending tolerance. This technique paves a new route for building large-scale cost-effective flexible photovoltaic and optoelectronic devices
Fabrication of Antireflective Sub-Wavelength Structures on Silicon Nitride Using Nano Cluster Mask for Solar Cell Application
We have developed a simple and scalable approach for fabricating sub-wavelength structures (SWS) on silicon nitride by means of self-assembled nickel nanoparticle masks and inductively coupled plasma (ICP) ion etching. Silicon nitride SWS surfaces with diameter of 160–200 nm and a height of 140–150 nm were obtained. A low reflectivity below 1% was observed over wavelength from 590 to 680 nm. Using the measured reflectivity data in PC1D, the solar cell characteristics has been compared for single layer anti-reflection (SLAR) coatings and SWS and a 0.8% improvement in efficiency has been seen
- …