25,734 research outputs found
CP violation in semileptonic tau lepton decays
The leading order contribution to the direct CP asymmetry in tau^{+/-} ->
K^{+/-} pi^0 nu_{tau} decay rates is evaluated within the Standard Model. The
weak phase required for CP violation is introduced through an interesting
mechanism involving second order weak interactions, which is also responsible
for tiny violations of the Delta S= Delta Q rule in K_{l3} decays. The
calculated CP asymmetry turns out to be of order 10^{-12}, leaving a large
window for studying effects of non-standard sources of CP violation in this
observable.Comment: 5 pages, 3 figures, version published in Phys.Rev.
Influence of substrate temperature on lattice strain field and phase transition in MeV oxygen ion implanted GaAs crystals
A detailed study of the influence of substrate temperature on the radiation-induced lattice strain field and crystalline-to-amorphous (c-a) phase transition in MeV oxygen ion implanted GaAs crystals has been made using channeling Rutherford backscattering spectroscopy, secondary ion mass spectrometry, and the x-ray rocking curve technique. A comparison has been made between the cases of room temperature (RT) and low temperature (LT) (about 100 K) implantation. A strong in situ dynamic annealing process is found in RT implantation at a moderate beam current, resulting in a uniform positive strain field in the implanted layer. LT implantation introduces a freeze-in effect which impedes the recombination and diffusion of initial radiation-created lattice damage and defects, and in turn drives more efficiently the c-a transition as well as strain saturation and relaxation. The results are interpreted with a spike damage model in which the defect production process is described in terms of the competition between defect generation by nuclear spikes and defects diffusion and recombination stimulated by electronic spikes. It is also suggested that the excess population of vacancies and their complexes is responsible for lattice spacing expansion in ion-implanted GaAs crystals
Composite material shear property measurement using the Iosipescu specimen
A detailed evaluation of the suitability of the Iosipescu specimen tested in the modified Wyoming fixture is presented. Finite element analysis and moire interferometry are used to assess the uniformity of the shear stress field in the test section of unidirectional and cross-ply graphite-epoxy composites. The nonuniformity of the strain field and the sensitivity of some fiber orientations to the specimen/fixture contact mechanics are discussed. The shear responses obtained for unidirectional and cross-ply graphite-epoxy composites are discussed and problems associated with anomalous behavior are addressed. An experimental determination of the shear response of a range of material systems using strain gage instrumentation and moire interferometry is performed
Spin Relaxation Times of Single-Wall Carbon Nanotubes
We have measured temperature ()- and power-dependent electron spin
resonance in bulk single-wall carbon nanotubes to determine both the
spin-lattice and spin-spin relaxation times, and . We observe that
increases linearly with from 4 to 100 K, whereas {\em
decreases} by over a factor of two when is increased from 3 to 300 K. We
interpret the trend as spin-lattice relaxation via
interaction with conduction electrons (Korringa law) and the decreasing
dependence of as motional narrowing. By analyzing the latter, we
find the spin hopping frequency to be 285 GHz. Last, we show that the Dysonian
lineshape asymmetry follows a three-dimensional variable-range hopping behavior
from 3 to 20 K; from this scaling relation, we extract a localization length of
the hopping spins to be 100 nm.Comment: 6 pages, 3 figure
Interstitial gas and density-segregation in vertically-vibrated granular media
We report experimental studies of the effect of interstitial gas on
mass-density-segregation in a vertically-vibrated mixture of equal-sized bronze
and glass spheres. Sufficiently strong vibration in the presence of
interstitial gas induces vertical segregation into sharply separated bronze and
glass layers. We find that the segregated steady state (i.e., bronze or glass
layer on top) is a sensitive function of gas pressure and viscosity, as well as
vibration frequency and amplitude. In particular, we identify distinct regimes
of behavior that characterize the change from bronze-on-top to glass-on-top
steady-state.Comment: 4 pages, 5 figures, submitted to PRL; accepted in PRE as rapid
communication, with revised text and reference
Electronic cooling of a submicron-sized metallic beam
We demonstrate electronic cooling of a suspended AuPd island using
superconductor-insulator-normal metal tunnel junctions. This was achieved by
developing a simple fabrication method for reliably releasing narrow submicron
sized metal beams. The process is based on reactive ion etching and uses a
conducting substrate to avoid charge-up damage and is compatible with e.g.
conventional e-beam lithography, shadow-angle metal deposition and oxide tunnel
junctions. The devices function well and exhibit clear cooling; up to factor of
two at sub-kelvin temperatures.Comment: 4 pages, 3 figure
Radiative Corrections to Electron-Proton Scattering
The radiative corrections to elastic electron-proton scattering are analyzed
in a hadronic model including the finite size of the nucleon. For initial
electron energies above 8 GeV and large scattering angles, the proton vertex
correction in this model increases by at least two percent the overall factor
by which the one-photon exchange (Rosenbluth) cross section must be multiplied.
The contribution of soft photon emission is calculated exactly. Comparison is
made with the generally used expressions previously obtained by Mo and Tsai.
Results are presented for some kinematics at high momentum transfer.Comment: 31 pages, 4 figure
- …