28,797 research outputs found

    The influence of conducting flaps on the reflection coefficient of a parallel-plate waveguide illuminating a conducting sheet

    Get PDF
    Conducting flap effects on reflection coefficient of parallel-plate waveguide illuminating conducting shee

    Aperture reflection coefficient of a parallel- plate waveguide by wedge diffraction analysis

    Get PDF
    Aperture reflection coefficient of parallel plate waveguide by wedge diffraction analysi

    TEC enhancement due to energetic electrons above Taiwan and the West Pacific

    Full text link
    The energetic electrons of the inner radiation belt during a geomagnetic disturbance can penetrate in the forbidden range of drift shells located at the heights of the topside equatorial ionosphere (<1000 km). A good correlation was previously revealed between positive ionospheric storms and intense fluxes of quasi-trapped 30-keV electrons at ~900 km height in the forbidden zone. In the present work, we use statistics to validate an assumption that the intense electron fluxes in the topside equatorial ionosphere can be an important source of the ionization in the low-latitude ionosphere. The data on the energetic electrons were obtained from polar orbiting satellites over the periods of the 62 strong geomagnetic storms from 1999 to 2006. Ionospheric response to the selected storms was determined using global ionospheric maps of vertical total electron content (VTEC). A case-event study of a major storm on 9 November 2004 provided experimental evidence in support to the substantial ionization effect of energetic electrons during positive ionospheric storms at the low latitudes. Statistical analysis of nine magnetic storms indicated that the VTEC increases coincided with and coexisted with intense 30-keV electron fluxes irrespective of local time and phase of geomagnetic storm. We concluded that extremely intense fluxes of the 30-keV electrons in the topside low-latitude ionosphere can contribute ~ 10 - 30 TECU to the localized positive ionospheric storms.Comment: 15 pages, 4 figures, 1 table accepted for publication in Terrestrial, Atmospheric and Oceanic Sciences (TAO), Dec. 2012 A special issue on "Connection of solar and heliospheric activities with near-Earth space weather: Sun-Earth connection

    An easy-to-use diagnostic system development shell

    Get PDF
    The Diagnostic System Development Shell (DSDS), an expert system development shell for diagnostic systems, is described. The major objective of building the DSDS is to create a very easy to use and friendly environment for knowledge engineers and end-users. The DSDS is written in OPS5 and CommonLisp. It runs on a VAX/VMS system. A set of domain independent, generalized rules is built in the DSDS, so the users need not be concerned about building the rules. The facts are explicitly represented in a unified format. A powerful check facility which helps the user to check the errors in the created knowledge bases is provided. A judgement facility and other useful facilities are also available. A diagnostic system based on the DSDS system is question driven and can call or be called by other knowledge based systems written in OPS5 and CommonLisp. A prototype diagnostic system for diagnosing a Philips constant potential X-ray system has been built using the DSDS

    Influence of substrate temperature on lattice strain field and phase transition in MeV oxygen ion implanted GaAs crystals

    Get PDF
    A detailed study of the influence of substrate temperature on the radiation-induced lattice strain field and crystalline-to-amorphous (c-a) phase transition in MeV oxygen ion implanted GaAs crystals has been made using channeling Rutherford backscattering spectroscopy, secondary ion mass spectrometry, and the x-ray rocking curve technique. A comparison has been made between the cases of room temperature (RT) and low temperature (LT) (about 100 K) implantation. A strong in situ dynamic annealing process is found in RT implantation at a moderate beam current, resulting in a uniform positive strain field in the implanted layer. LT implantation introduces a freeze-in effect which impedes the recombination and diffusion of initial radiation-created lattice damage and defects, and in turn drives more efficiently the c-a transition as well as strain saturation and relaxation. The results are interpreted with a spike damage model in which the defect production process is described in terms of the competition between defect generation by nuclear spikes and defects diffusion and recombination stimulated by electronic spikes. It is also suggested that the excess population of vacancies and their complexes is responsible for lattice spacing expansion in ion-implanted GaAs crystals
    corecore