60,200 research outputs found

    Charge Transport Scalings in Turbulent Electroconvection

    Get PDF
    We describe a local-power law scaling theory for the mean dimensionless electric current NuNu in turbulent electroconvection. The experimental system consists of a weakly conducting, submicron thick liquid crystal film supported in the annulus between concentric circular electrodes. It is driven into electroconvection by an applied voltage between its inner and outer edges. At sufficiently large voltage differences, the flow is unsteady and electric charge is turbulently transported between the electrodes. Our theoretical development, which closely parallels the Grossmann-Lohse model for turbulent thermal convection, predicts the local-power law NuF(Γ)RγPδNu \sim F(\Gamma) {\cal R}^{\gamma} {\cal P}^{\delta}. R{\cal R} and P{\cal P} are dimensionless numbers that are similar to the Rayleigh and Prandtl numbers of thermal convection, respectively. The dimensionless function F(Γ)F(\Gamma), which is specified by the model, describes the dependence of NuNu on the aspect ratio Γ\Gamma. We find that measurements of NuNu are consistent with the theoretical model.Comment: 12 pages, 7 figures, Submitted to Phys. Rev. E. See also http://www.physics.utoronto.ca/nonlinea

    Combining Stream Mining and Neural Networks for Short Term Delay Prediction

    Full text link
    The systems monitoring the location of public transport vehicles rely on wireless transmission. The location readings from GPS-based devices are received with some latency caused by periodical data transmission and temporal problems preventing data transmission. This negatively affects identification of delayed vehicles. The primary objective of the work is to propose short term hybrid delay prediction method. The method relies on adaptive selection of Hoeffding trees, being stream classification technique and multilayer perceptrons. In this way, the hybrid method proposed in this study provides anytime predictions and eliminates the need to collect extensive training data before any predictions can be made. Moreover, the use of neural networks increases the accuracy of the predictions compared with the use of Hoeffding trees only

    Self-consistent determination of the perpendicular strain profile of implanted Si by analysis of x-ray rocking curves

    Get PDF
    Results of a determination of strain perpendicular to the surface and of the damage in (100) Si single crystals irradiated by 250-keV Ar+ ions at 77 K are presented. Double-crystal x-ray diffraction and dynamical x-ray diffraction theory are used. Trial strain and damage distributions were guided by transmission electron microscope observations and Monte Carlo simulation of ion energy deposition. The perpendicular strain and damage profiles, determined after sequentially removing thin layers of Ar+-implanted Si, were shown to be self-consistent, proving the uniqueness of the deconvolution. Agreement between calculated and experimental rocking curves is obtained with strain and damage distributions which closely follow the shape of the trim simulations from the maximum damage to the end of the ion range but fall off more rapidly than the simulation curve near the surface. Comparison of the trim simulation and the strain profile of Ar+-implanted Si reveals the importance of annealing during and after implantation and the role of complex defects in the final residual strain distribution

    Microfluidic immunomagnetic multi-target sorting – a model for controlling deflection of paramagnetic beads

    Get PDF
    We describe a microfluidic system that uses a magnetic field to sort paramagnetic beads by deflecting them in the direction normal to the flow. Our experiments systematically study the dependence of the beads’ deflection on: bead size and susceptibility, magnet strength, fluid speed and viscosity, and device geometry. We also develop a design parameter that can aid in the design of microfluidic devices for immunomagnetic multi-target sorting

    Induced Electroweak Symmetry Breaking and Supersymmetric Naturalness

    Full text link
    In this paper we study a new class of supersymmetric models that can explain a 125 GeV Higgs without fine-tuning. These models contain additional `auxiliary Higgs' fields with large tree-level quartic interaction terms but no Yukawa couplings. These have electroweak-breaking vacuum expectation values, and contribute to the VEVs of the MSSM Higgs fields either through an induced quartic or through an induced tadpole. The quartic interactions for the auxiliary Higgs fields can arise from either D-terms or F-terms. The tadpole mechanism has been previously studied in strongly-coupled models with large D-terms, referred to as `superconformal technicolor.' The perturbative models studied here preserve gauge coupling unification in the simplest possible way, namely that all new fields are in complete SU(5) multiplets. The models are consistent with the observed properties of the 125 GeV Higgs-like boson as well as precision electroweak constraints, and predict a rich phenomenology of new Higgs states at the weak scale. The tuning is less than 10% in almost all of the phenomenologically allowed parameter space. If electroweak symmetry is broken by an induced tadpole, the cubic and quartic Higgs self-couplings are significantly smaller than in the standard model.Comment: 37 pages, 11 figure

    Superconductivity in Inhomogeneous Hubbard Models

    Full text link
    We present a controlled perturbative approach to the low temperature phase diagram of highly inhomogeneous Hubbard models in the limit of small coupling, tt', between clusters. We apply this to the dimerized and checkerboard models. The dimerized model is found to behave like a doped semiconductor, with a Fermi-liquid groundstate with parameters ({\it e.g.} the effective mass) which are smooth functions of the Hubbard interaction, UU. By contrast, the checkerboard model has a nodeless d-wave superconducting state (preformed pair condensate, dd-BEC) for 0<U<Uc0 < U < U_c, which smoothly crosses over to an intermediate BCS-like superconducting phase (dd-BCS), also with no nodal quasi-particles, for UUc<O(t)|U - U_c| < {\cal O}(t^\prime), which gives way to a Fermi liquid phase at large U>Uc=4.58U > U_c = 4.58.Comment: 7 pages, a sign error in Eq.(3) has been corrected and its consequence has been discussed with updated figure

    CP, T and CPT Violations in the K^0 - bar{K^0} System -- Present Status --

    Full text link
    Possible violation of CP, T and CPT symmetries in the K^0 - bar{K^0} system is studied in a way as phenomenological and comprehensive as possible. For this purpose, we first introduce parameters which represent violation of these symmetries in mixing parameters and decay amplitudes in a convenient and well-defined way and, treating these parameters as small, derive formulas which relate them to the experimentally measured quantities. We then perform numerical analyses to derive constraints to these symmetry-violating parameters, with the latest data reported by KTeV Collaboration, NA48 Collaboration and CPLEAR Collaboration, along with those compiled by Particle Data Group, used as inputs. The result obtained by CPLEAR Collaboration from an unconstrained fit to a time-dependent leptonic asymmetry, aided by the Bell-Steinberger relation, enables us to determine or constrain most of the parameters separately. It is shown among the other things that (1) CP and T symmetries are violated definitively at least at the level of 10^{-4} in 2 pi decays, (2) CP and T symmetries are violated at least at the level of 10^{-3} in the K^0 - bar{K^0} mixing, and (3) CPT symmetry is at present tested to the level of 10^{-5} at the utmost.Comment: 20 page

    Cross-border intellectual property rights: contract enforcement and absorptive capacity

    Get PDF
    This paper studies cross-border intellectual property rights (IPR) as a North-South contract using a Nash bargaining approach and distinguishes between the outcome and its actual enforcement. The absorptive capacity of the Southern country to exploit technology transfer plays a key role in the negotiated level of IPRs and its post-treaty enforcement. The optimal level of IPR protection relates positively to absorptive capacity. This provides a rationale for the longer time-frame provided to least developed countries in Article 66 of TRIPS to implement its provisions. In addition, monitoring is only effective in preventing contract violation up to a critical level of absorptive capacity. We relate this to the US Trade Representative “Special 301” report, which flags countries that deny adequate IPR protection as “priority watch list”. While disputes with less developed economies are promptly resolved, emerging economies, where most losses from copyright piracy originates from, continue to remain on the list.
    corecore