3 research outputs found

    Characterizing Heterogeneous Behavior of Non-Point-Source Polluters in a Spatial Game under Alternate Sensing and Incentive Designs

    Get PDF
    Behavioral research on natural resource management has revealed a number of variables that can impact collective action. This research builds upon an interactive decision game using experimental economics methods with a focus on production decisions and the corresponding impact they have on ambient water quality. Using hierarchical clustering algorithms, four primary types of behavior are identified: competitive, hypercompetitive, cooperative, and hypercooperative. The results from the experiment are used to test the following three hypotheses: (1) financial incentives increase cooperative behavior, (2) increasing the number and frequency of water quality sensors increases cooperative behavior, and (3) the spatial location of the agents and sensors affect cooperative behavior. Mixed-effect multinomial logistic models reveal that policy incentives, sensor location, and frequency of sensing alter the behavioral strategies of decision makers in the experiment and that outcomes vary by spatial location. From a watershed planning perspective, minimal investments in advanced environmental monitoring/sensing systems can potentially have large effects in improving water quality; however, there is also some evidence of marginal diminishing returns associated with such investments

    Coupled impacts of climate and land use change across a river-lake continuum: Insights from an integrated assessment model of Lake Champlain\u27s Missisquoi Basin, 2000-2040

    Get PDF
    Global climate change (GCC) is projected to bring higher-intensity precipitation and higher-variability temperature regimes to the Northeastern United States. The interactive effects of GCC with anthropogenic land use and land cover changes (LULCCs) are unknown for watershed level hydrological dynamics and nutrient fluxes to freshwater lakes. Increased nutrient fluxes can promote harmful algal blooms, also exacerbated by warmer water temperatures due to GCC. To address the complex interactions of climate, land and humans, we developed a cascading integrated assessment model to test the impacts of GCC and LULCC on the hydrological regime, water temperature, water quality, bloom duration and severity through 2040 in transnational Lake Champlain\u27s Missisquoi Bay. Temperature and precipitation inputs were statistically downscaled from four global circulation models (GCMs) for three Representative Concentration Pathways. An agent-based model was used to generate four LULCC scenarios. Combined climate and LULCC scenarios drove a distributed hydrological model to estimate river discharge and nutrient input to the lake. Lake nutrient dynamics were simulated with a 3D hydrodynamic-biogeochemical model. We find accelerated GCC could drastically limit land management options to maintain water quality, but the nature and severity of this impact varies dramatically by GCM and GCC scenario

    The multivariate climatic and anthropogenic elasticity of streamflow in the Eastern United States

    No full text
    Study region: Eastern United States excluding Florida. Study focus: We used elasticity to assess the sensitivity of mean and drought flows to changes in climate, land use and land cover (LULC), and water use across a broad region. Three multivariate regression analyses were used for elasticity estimation: nonparametric (NP), double-logarithm (DL), and variable transformation (VT). We demonstrate the importance of using multivariate analysis for elasticity estimation and show that the reliability of elasticity estimates depends critically upon model goodness-of-fit. VT analysis was found to provide more reliable estimates than other analyses across the Eastern U.S., except the Northeast where slight multicollinearity existed in the VT but was absent in the NP models. New hydrological insights for the region: Changes in climate, LULC, and water use all significantly affected mean and drought flows. The interactions of these factors moderated the effect of precipitation on mean flow for regions where anthropogenic influences cannot be ignored. Human-induced land use changes were found to have a greater influence on drought flow than mean flow. Increased water use significantly reduced mean flow in the Northeast, where urbanization was more prevalent. Although the effect of water use on drought flow was found to be greater than its effect on mean flow, the variations of most water use effect estimates were too large to be concluded as significant
    corecore