81 research outputs found

    Focal foveal atrophy of unknown etiology: Clinical pictures and possible underlying causes

    Get PDF
    Background/PurposeFocal foveal atrophy is defined as the presence of a small, focal, ill-defined, hypopigmented foveal or juxtafoveal lesion, with the remaining retina unaffected. The purpose of this study was to report the clinical characteristics and optical coherence tomography (OCT) in patients with focal foveal atrophy of unknown etiology.MethodsThe study was a retrospective observational case series. Data collected included complete ocular examination results for best corrected visual acuity (BCVA), ophthalmoscopy, fundus photography, fluorescein angiography, color sense discrimination tests, visual field tests, and OCT examinations.ResultsTwenty-three eyes in 21 patients were examined. The mean patient age was 49.2 ± 15.4 years. The mean BCVA was 20/25. The 21 patients were divided into three groups according to OCT results. Group 1 eyes (n = 10) had intact inner and outer hyperreflective layers (HRLs), with the signal of the inner HRL corresponding to the junction between the inner and outer photoreceptor segments and the outer HRL corresponding to the retinal pigment epithelium (RPE). Group 2 eyes (n = 9) had small hyporeflective defects with defects in the inner HRL at the fovea but an intact outer HRL. Group 3 eyes (n = 4) had small hyporeflective defects in both the inner and outer HRLs at the fovea. Groups 3 eyes had significantly lower visual acuity compared to Group 1 eyes and Group 2 eyes. There was no significant difference in visual acuity between Group 1 and Group 2 eyes. There were no significant differences among the groups with respect to color vision or foveal thickness.ConclusionThis is the first report of clinical presentations for patients with focal foveal atrophy of unknown etiology. OCT aided in the diagnosis and assessment of the degree of retinal structural abnormalities, but the real etiology of foveal atrophy remains unclear

    Double primary bronchogenic carcinoma of the lung and papillary thyroid carcinoma: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Double primary bronchogenic carcinoma and papillary carcinoma of the thyroid are extremely rare. We describe the case of a patient who underwent surgical resection for these two cancers.</p> <p>Case presentation</p> <p>A 56-year-old man presented to our hospital complaining of a cough with blood-tinged sputum. A slowly growing mass in the left lobe of the lung had been noted for about 1 year. He underwent video-assisted thoracic surgery of the left lower lobe and mediastinal lymph node dissection through an 8 cm utility incision. Pathology revealed a well-differentiated adenocarcinoma and the dissected lymph nodes were negative for malignancy. He also complained of a mass in his neck, which had grown slowly for over 5 years. A computed tomography scan of the neck revealed a left thyroid mass compressing the trachea towards the right side. There was no cervical lymphadenopathy. A left thyroid lobectomy was performed and pathology revealed a papillary carcinoma. Thus, he underwent a second operation to remove the right lobe of the thyroid. He underwent subsequent adjuvant chemotherapy.</p> <p>Conclusion</p> <p>In a review of the literature, it appears that there has only been one previously reported case of these two cancers, which was in Japan. The relationship between these two cancers is still unclear, and more case reports are required to determine this relationship.</p

    Distribution of Axial Length in Australians of Different Age Groups, Ethnicities, and Refractive Errors

    Get PDF
    Treatments are available to slow myopic axial elongation. Understanding normal axial length (AL) distributions will assist clinicians in choosing appropriate treatment for myopia. We report the distribution of AL in Australians of different age groups and refractive errors

    Comprehensive characterization of polyproline tri-helix macrocyclic nanoscaffolds for predictive ligand positioning

    Get PDF
    Multivalent ligands hold promise for enhancing avidity and selectivity to simultaneously target multimeric proteins, as well as potentially modulating receptor signaling in pharmaceutical applications. Essential for these manipulations are nanosized scaffolds that precisely control ligand display patterns, which can be achieved by using polyproline oligo-helix macrocyclic nanoscaffolds via selective binding to protein oligomers and cell surface receptors. This work focuses on synthesis and structural characterization of different-sized polyproline tri-helix macrocyclic (PP3M) scaffolds. Through combined analysis of circular dichroism (CD), small- and wide-angle X-ray scattering (SWAXS), electron spin resonance (ESR) spectroscopy, and molecular modeling, a non-coplanar tri-helix loop structure with partially crossover helix ends is elucidated. This structural model aligns well with scanning tunneling microscopy (STM) imaging. The present work enhances the precision of nanoscale organic synthesis, offering prospects for controlled ligand positioning on scaffolds. This advancement paves the way for further applications in nanomedicine through selective protein interaction, manipulation of cell surface receptor functions, and developments of more complex polyproline-based nanostructures

    Reducing TRPC1 Expression through Liposome-Mediated siRNA Delivery Markedly Attenuates Hypoxia-Induced Pulmonary Arterial Hypertension in a Murine Model

    Get PDF
    We tested the hypothesis that Lipofectamine siRNA delivery to deplete transient receptor potential cation channel (TRPC) 1 protein expression can suppress hypoxia-induced pulmonary arterial hypertension (PAH) in mice. Adult male C57BL/6 mice were equally divided into group 1 (normal controls), group 2 (hypoxia), and group 3 (hypoxia + siRNA TRPC1). By day 28, right ventricular systolic pressure (RVSP), number of muscularized arteries, right ventricle (RV), and lung weights were increased in group 2 than in group 1 and reduced in group 3 compared with group 2. Pulmonary crowded score showed similar pattern, whereas number of alveolar sacs exhibited an opposite pattern compared to that of RVSP in all groups. Protein expressions of TRPCs, HIF-1α, Ku-70, apoptosis, and fibrosis and pulmonary mRNA expressions of inflammatory markers were similar pattern, whereas protein expressions of antifibrosis and VEGF were opposite to the pattern of RVSP. Cellular markers of pulmonary DNA damage, repair, and smooth muscle proliferation exhibited a pattern similar to that of RVSP. The mRNA expressions of proapoptotic and hypertrophy biomarkers displayed a similar pattern, whereas sarcomere length showed an opposite pattern compared to that of RVSP in all groups. Lipofectamine siRNA delivery effectively reduced TRPC1 expression, thereby attenuating PAH-associated RV and pulmonary arteriolar remodeling

    Transcriptome Changes in Relation to Manic Episode

    Get PDF
    Bipolar disorder (BD) is highly heritable and well known for its recurrent manic and depressive episodes. The present study focused on manic episode in BD patients and aimed to investigate state-specific transcriptome alterations between acute episode and remission, including messenger RNAs (mRNAs), long noncoding RNAs (lncRNAs), and micro-RNAs (miRNAs), using microarray and RNA sequencing (RNA-Seq) platforms. BD patients were enrolled with clinical information, and peripheral blood samples collected at both acute and remission status spanning for at least 2 months were confirmed by follow-ups. Symptom severity was assessed by Young Mania Rating Scale. We enrolled six BD patients as the discovery samples and used the Affymetrix Human Transcriptome Array 2.0 to capture transcriptome data at the two time points. For replication, expression data from Gene Expression Omnibus that consisted of 11 BD patients were downloaded, and we performed a mega-analysis for microarray data of 17 patients. Moreover, we conducted RNA sequencing (RNA-Seq) in additional samples of 7 BD patients. To identify intraindividual differentially expressed genes (DEGs), we analyzed data using a linear model controlling for symptom severity. We found that noncoding genes were of majority among the top DEGs in microarray data. The expression fold change of coding genes among DEGs showed moderate to high correlations (∼0.5) across platforms. A number of lncRNAs and two miRNAs (MIR181B1 and MIR103A1) exhibited high levels of gene expression in the manic state. For coding genes, we reported that the taste function-related genes, including TAS2R5 and TAS2R3, may be mania state-specific markers. Additionally, four genes showed a nominal p-value of less than 0.05 in all our microarray data, mega-analysis, and RNA-Seq analysis. They were upregulated in the manic state and consisted of MS4A14, PYHIN1, UTRN, and DMXL2, and their gene expression patterns were further validated by quantitative real-time polymerase chain reaction (PCR) (qRT-PCR). We also performed weight gene coexpression network analysis to identify gene modules for manic episode. Genes in the mania-related modules were different from the susceptible loci of BD obtained from genome-wide association studies, and biological pathways in relation to these modules were mainly related to immune function, especially cytokine–cytokine receptor interaction. Results of the present study elucidated potential molecular targets and genomic networks that are involved in manic episode. Future studies are needed to further validate these biomarkers for their roles in the etiology of bipolar illness
    • …
    corecore