264 research outputs found

    THE EFFECT OF DIFFERENT PLYOMETRIC-SQUAT TRAINING ON TAEKWONDO POWER DEVELOPMENT IN THE LOWER EXTREMITY

    Get PDF
    The purpose of this study was to investigate the effect on three different training methods by combining the typical plyometric training method (drop jump) and traditional weight training (112squat). The subjects were fifteen male high school athletes. The training duration for all subjects was eight weeks, and the frequency was twice a week. One Kistler force plate was used to record the power abilities of the subjects performing counter-movement jump (CMJ) and one PEAK camera (120 Hz) was also used to record the Axe-kicking movement time. Based on the results of this study, combining the vertical drop jump and horizontal drop jump with weight training could improve the maximum power and Axe-kick movement time. Therefore, it is important to consider the movement specific character when the muscular strength training of Taekwondo athletes

    Spontaneous CP Violating Phase as The CKM Matrix Phase

    Full text link
    We propose that the CP violating phase in the CKM mixing matrix is identical to the CP phases responsible for the spontaneous CP violation in the Higgs potential. A specific multi-Higgs model with Peccei-Quinn (PQ) symmetry is constructed to realize this idea. The CP violating phase does not vanish when all Higgs masses become large. There are flavor changing neutral current (FCNC) interactions mediated by neutral Higgs bosons at the tree level. However, unlike general multi-Higgs models, the FCNC Yukawa couplings are fixed in terms of the quark masses and CKM mixing angles. Implications for meson-anti-meson mixing, including recent data on DDˉD-\bar D mixing, and neutron electric dipole moment (EDM) are studied. We find that the neutral Higgs boson masses can be at the order of one hundred GeV. The neutron EDM can be close to the present experimental upper bound.Comment: 16 pages, RevTex. Several typos corrected, and one reference adde

    Burkhardt-Cottingham sum rule and forward spin polarizabilities in Heavy Baryon Chiral Perturbation Theory

    Full text link
    We study spin-dependent sum rules for forward virtual Compton scattering(VVCS) off the nucleon in heavy baryon chiral perturbation theory at order O(p4)O(p^4). We show how these sum rules can be evaluated from low energy expansions (in the virtual photon energy) of the forward VVCS amplitudes. We study in particular the Burkhardt -Cottingham sum rule in HBChPT and higher terms in the low energy expansion, which can be related to the generalized forward spin polarizabilities of the nucleon. The dependence of these observables on the photon virtuality Q2Q^2 can be accessed, at small and intermediate Q2Q^2 values, from existing and forthcoming data at Jefferson Lab.Comment: 16 pages,4 fig

    Spontaneous CP Violating Phase as the Phase in PMNS Matrix

    Full text link
    We study the possibility of identifying the CP violating phases in the PMNS mixing matrix in the lepton sector and also that in the CKM mixing matrix in the quark sector with the phase responsible for the spontaneous CP violation in the Higgs potential, and some implications. Since the phase in the CKM mixing matrix is determined by experimental data, the phase in the lepton sector is therefore also fixed. The mass matrix for neutrinos is constrained leading to constraints on the Jarlskog CP violating parameter JJ, and the effective mass for neutrinoless double beta decay. The Yukawa couplings are also constrained. Different ways of identifying the phases have different predictions for μeeeˉ\mu \to e e\bar e and τl1l2lˉ3\tau \to l_1 l_2 \bar l_3. Future experimental data can be used to distinguish different models.Comment: 16 pages, 3 figure

    CP Phases in Correlated Production and Decay of Neutralinos in the Minimal Supersymmetric Standard Model

    Get PDF
    We investigate the associated production of neutralinos e+eχ~10χ~20e^+e^-\to\tilde{\chi}^0_1\tilde{\chi}^0_2 accompanied by the neutralino leptonic decay χ~20χ~10+\tilde{\chi}^0_2\to\tilde{\chi}^0_1 \ell^+\ell^-, taking into account initial beam polarization and production-decay spin correlations in the minimal supersymmetric standard model with general CP phases but without generational mixing in the slepton sector. The stringent constraints from the electron EDM on the CP phases are also included in the discussion. Initial beam polarizations lead to three CP--even distributions and one CP--odd distribution, which can be studied independently of the details of the neutralino decays. We find that the production cross section and the branching fractions of the leptonic neutralino decays are very sensitive to the CP phases. In addition, the production--decay spin correlations lead to several CP--even observables such as lepton invariant mass distribution, and lepton angular distribution, and one interesting T--odd (CP--odd) triple product of the initial electron momentum and two final lepton momenta, the size of which might be large enough to be measured at the high--luminosity future electron--positron collider or can play a complementary role in constraining the CP phases with the EDM constraints.Comment: Revtex, 37 pages, 12 eps figure

    EGFR L858R Mutation and Polymorphisms of Genes Related to Estrogen Biosynthesis and Metabolism in Never-Smoking Female Lung Adenocarcinoma Patients

    Get PDF
    Purpose: To assess whether polymorphisms of genes related to estrogen biosynthesis and metabolism are associated with EGFR mutations. Experimental Design: We studied 617 patients with lung adenocarcinoma, including 302 never-smoking women. On the basis of multiple candidate genes approach, the effects of polymorphisms of CYP17, CYP19A1, ER alpha, and COMT in association with the occurrence of EGFR mutations were evaluated using logistic regression analysis. Results: In female never-smokers, significant associations with EGFR L858R mutation were found for the tetranucleotide (TTTA)(n) repeats in CYP19A1 (odds ratio, 2.6; 95%CI, 1.2-5.7 for 1 or 2 alleles with (TTTA)(n) repeats > 7 compared with both alleles with (TTTA) n repeats <= 7), and the rs2234693 in ERa (OR, 2.1; 95% CI, 1.1-4.0 for C/T and C/C genotypes compared with T/T genotype). The C/C genotype (vs. T/T genotype) of ERa was significantly associated with EGFR L858R mutation (OR, 3.0; 95% CI, 1.1-8.1), in-frame deletion (OR, 2.9; 95% CI, 1.1-7.6) and other mutations (OR, 4.3; 95% CI, 1.3-14.0). The genotype of COMT rs4680 was significantly associated with EGFR L858R mutation in female and male never-smokers showing OR's (95% CI) of 1.8 (1.0-3.2) and 3.6 (1.1-11.3), respectively, for genotypes G/A and G/G compared with genotype A/A. The number of risk alleles of CYP17, CYP19A1, ERa, and COMT was associated with an increasing OR of EGFR L858R mutation in female never-smokers (P = 0.0002 for trend). Conclusions: The L858R mutation of EGFR is associated with polymorphisms of genes related to estrogen biosynthesis and metabolism in never-smoking female lung adenocarcinoma patients. Clin Cancer Res; 17(8); 2149-58. (C) 2011 AACR

    CP Violation in τ3πντ\tau\rightarrow 3\pi\nu_\tau

    Full text link
    We consider CP violating effects in the decays τ(3π)ντ\tau\rightarrow (3\pi)\nu_\tau where both the JP=1+{\rm J}^{\rm P}=1^+ resonance, a1a_1, and JP=0{\rm J}^{\rm P}=0^- resonance, π\pi^\prime, can contribute. The interference between the a1a_1 and π\pi^\prime resonances can lead to enhanced CP-violating asymmetries whose magnitudes depend crucially on the π\pi^\prime decay constant, fπf_{\pi^\prime}. We make an estimate of fπf_{\pi^\prime} with a simplified chiral Lagrangian coupled to a massive pseudoscalar field, and we compare the estimates from the non-relativistic quark model and from the QCD sum rule with the estimate from the `mock' meson model. We then estimate quantitatively the size of CP-violating effects in a multi-Higgs-doublet model and scalar-leptoquark models. We find that, while CP-violating effects in the scalar-leptoquark models may require more than 101010^{10} τ\tau leptons, CP-violating effects from the multi-Higgs-doublet model can be seen at the 2σ2\sigma level with about 10710^7 τ\tau leptons using the chiral Lagrangian estimate of fπ=(15)×103f_{\pi^\prime}=(1\sim 5)\times 10^{-3} GeV.Comment: Latex, 30 pages, 2 figures (not included). Three compressed postscript files of the paper available at ftp://ftp.kek.jp/kek/preprints/TH/TH-419/kekth419.ps.gz, Tau1.ps.gz, Tau2.ps.g

    2022 Upgrade and Improved Low Frequency Camera Sensitivity for CMB Observation at the South Pole

    Full text link
    Constraining the Galactic foregrounds with multi-frequency Cosmic Microwave Background (CMB) observations is an essential step towards ultimately reaching the sensitivity to measure primordial gravitational waves (PGWs), the sign of inflation after the Big-Bang that would be imprinted on the CMB. The BICEP Array telescope is a set of multi-frequency cameras designed to constrain the energy scale of inflation through CMB B-mode searches while also controlling the polarized galactic foregrounds. The lowest frequency BICEP Array receiver (BA1) has been observing from the South Pole since 2020 and provides 30 GHz and 40 GHz data to characterize the Galactic synchrotron in our CMB maps. In this paper, we present the design of the BA1 detectors and the full optical characterization of the camera including the on-sky performance at the South Pole. The paper also introduces the design challenges during the first observing season including the effect of out-of-band photons on detectors performance. It also describes the tests done to diagnose that effect and the new upgrade to minimize these photons, as well as installing more dichroic detectors during the 2022 deployment season to improve the BA1 sensitivity. We finally report background noise measurements of the detectors with the goal of having photon noise dominated detectors in both optical channels. BA1 achieves an improvement in mapping speed compared to the previous deployment season.Comment: Proceedings of SPIE Astronomical Telescopes + Instrumentation 2022 (AS22

    Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3b

    Get PDF
    We search for gravitational-wave signals associated with gamma-ray bursts (GRBs) detected by the Fermi and Swift satellites during the second half of the third observing run of Advanced LIGO and Advanced Virgo (2019 November 1 15:00 UTC-2020 March 27 17:00 UTC). We conduct two independent searches: A generic gravitational-wave transients search to analyze 86 GRBs and an analysis to target binary mergers with at least one neutron star as short GRB progenitors for 17 events. We find no significant evidence for gravitational-wave signals associated with any of these GRBs. A weighted binomial test of the combined results finds no evidence for subthreshold gravitational-wave signals associated with this GRB ensemble either. We use several source types and signal morphologies during the searches, resulting in lower bounds on the estimated distance to each GRB. Finally, we constrain the population of low-luminosity short GRBs using results from the first to the third observing runs of Advanced LIGO and Advanced Virgo. The resulting population is in accordance with the local binary neutron star merger rate. © 2022. The Author(s). Published by the American Astronomical Society
    corecore