329 research outputs found

    Low-cost cell-based production platform for seasonal and pandemic influenza vaccines

    Get PDF
    Influenza-related illnesses have caused an estimated over million cases of severe illness, and it has about hundred thousands of deaths worldwide annually. Traditionally these vaccines are produced in embryonated chicken eggs. However, in the case of a pandemic outbreak, this egg-based production system may not be quickly enough to meet the surging demand. The efficacy associated with egg-based vaccines are low in recently years. The raising concerns with egg-derived vaccines is resulting in the spurred exploration of alternatives. MDCK cells are becoming as an alternative host to embryonated eggs for influenza virus propagation. Although MDCK cells were considered to be a suitable host for the virus production, their inability to grow in suspension still limits the process of scale-up and their production capability. Please click Additional Files below to see the full abstract

    Simple and robust downstream purification process for cell-derived influenza vaccines

    Get PDF
    New emerging influenza viruses with pandemic potentials were occurred in recent years, e.g. H5N1 in 1997, H1N1 in 2009, and H7N9 in 2013. The demand of producing pandemic influenza vaccines for human use with quick supply is high. For the cell-based pandemic influenza vaccines, we proposed a flow-through chromatography purification process. This process has only involved few purification steps and is easy to operate. Vero- and MDCK- cell derived avian influenza viruses including H5N1 and H7N9 were purified efficiently by the process proposed. The presented purification process consisted of clarification, inactivation, concentration, anion exchange chromatography (Capto Q), size exclusion and adsorption chromatography (Capto Core 700), diafiltration and sterile filtration. In the chromatography steps, cell DNA and protein were removed remarkably, and the virus were flowed through these columns. The flow rate was set as fast as 250 cm/min. The loading volume of virus solution was up to 50 times of column volume (CV).The DNA was removed over 90% after using Capto Q column, and was further removed by Capto Core 700 column. The overall removal rate of cellular DNA was more than 99%. The HA recovery rates of H5N1 and H7N9 influenza virus from Vero and MDCK cells were 20 to 40%. The DNA concentration of all purified bulks met the regulatory requirement of 10ng per dose. The developed purification process is simple and efficient, and it is suitable for purification of various influenza virus strains and can be used for the pandemic influenza vaccine production

    Nocturnal CPAP improves walking capacity in COPD patients with obstructive sleep apnoea

    Get PDF
    BACKGROUND: Exercise limitation is an important issue in patients with chronic obstructive pulmonary disease (COPD), and it often co-exists with obstructive sleep apnoea (overlap syndrome). This study examined the effects of nocturnal continuous positive airway pressure (CPAP) treatment on walking capacity in COPD patients with or without obstructive sleep apnoea. METHODS: Forty-four stable moderate-to-severe COPD patients were recruited and completed this study. They all underwent polysomnography, CPAP titration, accommodation, and treatment with adequate pressure. The incremental shuttle walking test was used to measure walking capacity at baseline and after two nights of CPAP treatment. Urinary catecholamine and heart rate variability were measured before and after CPAP treatment. RESULTS: After two nights of CPAP treatment, the apnoea-hypopnoea index and oxygen desaturation index significantly improved in both overlap syndrome and COPD patients, however these changes were significantly greater in the overlap syndrome than in the COPD group. Sleep architecture and autonomic dysfunction significantly improved in the overlap syndrome group but not in the COPD group. CPAP treatment was associated with an increased walking capacity from baseline from 226.4 ± 95.3 m to 288.6 ± 94.6 m (P < 0.05), and decreased urinary catecholamine levels, pre-exercise heart rate, oxygenation, and Borg scale in the overlap syndrome group. An improvement in the apnoea-hypopnoea index was an independent factor associated with the increase in walking distance (r = 0.564). CONCLUSION: Nocturnal CPAP may improve walking capacity in COPD patients with overlap syndrome. TRIAL REGISTRATION: NCT0091426

    Neuronal Activity Stimulated by Liquid Substrates Injection at Zusanli (ST36) Acupoint: The Possible Mechanism of Aquapuncture

    Get PDF
    Aquapuncture is a modified acupuncture technique and it is generally accepted that it has a greater therapeutic effect than acupuncture because of the combination of the acupoint stimulation and the pharmacological effect of the drugs. However, to date, the mechanisms underlying the effects of aquapuncture remain unclear. We hypothesized that both the change in the local spatial configuration and the substrate stimulation of aquapuncture would activate neuronal signaling. Thus, bee venom, normal saline, and vitamins B1 and B12 were injected into a Zusanli (ST36) acupoint as substrate of aquapuncture, whereas a dry needle was inserted into ST36 as a control. After aquapuncture, activated neurons expressing Fos protein were mainly observed in the dorsal horn of the spinal cord in lumbar segments L3–5, with the distribution nearly identical among all groups. However, the bee venom injection induced significantly more Fos-expressing neurons than the other substrates. Based on these data, we suggest that changes in the spatial configuration of the acupoint activate neuronal signaling and that bee venom may further strengthen this neuronal activity. In conclusion, the mechanisms for the effects of aquapuncture appear to be the spatial configuration changes occurring within the acupoint and the ability of injected substrates to stimulate neuronal activity

    Biomechanical investigation of flexor digitorum tendons in trigger finger patients using sonography

    Get PDF
    Trigger finger (TF) has generally been ascribed to primary changes in the first annular (A1) pulley. Repeated friction between the A1 pulley and flexor digitorum tendons could result in swelling of soft tissues, and thus it has been speculated that TF affects tendons’ biomechanical behaviors. However, the pathology mechanism related to these behaviors remains unclear. The purposes of this study are to understand (1) the variations in the morphologies of the flexor digitorum profundus (FDP) and flexor digitorum superficialis (FDS) between normal fingers and TFs, (2) the differences in the biomechanical behaviors of the FDP and FDS between normal fingers and TFs in various finger flexion positions, and (3) the effect of various finger positions on the biomechanical behaviors of the FDP and FDS

    Pleural Effusion after Percutaneous Radiofrequency Ablation for Hepatic Malignancies

    Get PDF
    AbstractBackground and AimsRadiofrequency ablation (RFA) can play an important role in the treatment of primary or metastatic liver tumors. Currently, percutaneous RFA is generally regarded as a safe, effective, and minimally invasive procedure. This study aimed to evaluate the presence and course of pleural effusion after monopolar RFA.MethodsFrom October 2008 to July 2013, a total of 54 patients (28 male and 26 female, mean age 65.2) treated with monopolar RFA were included in our study. 47 patients were diagnosed with hepatocellular carcinoma, 4 patients with hepatic metastasis, and 3 patients had other diagnoses. There were a total of 115 sessions of treatment and 199 liver tumors to be treated (1.73 ± 1.02 tumors treated per session). The tumor size ranged from 0.8 cm to 5.0 cm (mean 2.31 cm, standard deviation 1.04 cm). Thereafter, a follow-up ultrasound was performed within 24 hours subsequent to ablation to evaluate the presence of pleural effusion. The degree of pleural effusion was assessed by chest X-ray.ResultsFifteen (13.0%) treatment sessions in 14 patients showed right-sided pleural effusion after ablations. One patient had a large amount of effusion, while other patients manifested a minimal to small amount of effusion. There were 5 patients that experienced delayed resolution of pleural effusion; one patient (0.87%) had a minimal amount of pleural effusion even after one month. Overall, there was no pneumothorax, or periprocedural morality. Age, gender, tumor numbers, tumor sizes, and complete ablation of target tumors were similar among groups presenting with or without pleural effusion. Tumor locations associated with S78 segments abutting the diaphragm or right lobe of the liver were not associated with development of pleural effusion. Only the duration of ablation time had a marginal trend toward significance (p = 0.051).ConclusionsThe transient appearance of right-sided pleural effusion after percutaneous RFA for hepatic malignancies was not infrequent. However, refractory pleural effusion was rare

    Adaptation of High-Growth Influenza H5N1 Vaccine Virus in Vero Cells: Implications for Pandemic Preparedness

    Get PDF
    Current egg-based influenza vaccine production technology can't promptly meet the global demand during an influenza pandemic as shown in the 2009 H1N1 pandemic. Moreover, its manufacturing capacity would be vulnerable during pandemics caused by highly pathogenic avian influenza viruses. Therefore, vaccine production using mammalian cell technology is becoming attractive. Current influenza H5N1 vaccine strain (NIBRG-14), a reassortant virus between A/Vietnam/1194/2004 (H5N1) virus and egg-adapted high-growth A/PR/8/1934 virus, could grow efficiently in eggs and MDCK cells but not Vero cells which is the most popular cell line for manufacturing human vaccines. After serial passages and plaque purifications of the NIBRG-14 vaccine virus in Vero cells, one high-growth virus strain (Vero-15) was generated and can grow over 108 TCID50/ml. In conclusion, one high-growth H5N1 vaccine virus was generated in Vero cells, which can be used to manufacture influenza H5N1 vaccines and prepare reassortant vaccine viruses for other influenza A subtypes
    corecore